Browse > Article

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering  

Kim, Hong-Sung (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University)
Kim, Jong-Tae (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University)
Jung, Young-Jin (Department of Biomaterials Engineering, College of Natural Resources & Life Science / Joint Research Center of PNU-Fraunhofer IGB, Pusan National University)
Ryu, Su-Chak (Department of Nanomaterials, College of Nano Science and Technology, Pusan National University)
Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University)
Kim, Yong-Gyun (Department of Life Science & Environmental Biochemistry, College of Natural Resources & Life Science, Pusan National University)
Publication Information
Macromolecular Research / v.15, no.1, 2007 , pp. 65-73 More about this Journal
Abstract
Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.
Keywords
chitosan; fibroin; hydroxyapatite; composite; porous matrix; pore morphology;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 P. X. Ma, B. Schloo, D. Mooney, and R. Langer, J. Biomed. Mater. Res., 29, 1587 (1995)
2 E. T. Baran, K. Tuzlakoglu, A. J. Salgado, and R. L. Reis, J. Mater. Sci., Mater. Med., 15, 161 (2004)
3 P. X. Ma and R. Langer, in Polymers in Medicine and Pharmacy, Materials Research Society, Pittsburgh, 1995, pp 99-104
4 T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, J. Biomed. Mater. Res., 51, 475 (2000)
5 G. S. Sailaja, S. Velayudhan, M. C. Sunny, K. Sreenivasan, H. K. Varma, and P. Ramesh, J. Mater. Sci., 38, 3653 (2003)
6 G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Engineering and Regenerative Medicine, 1, 9 (2004)
7 J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, Biomaterials, 26, 3961 (2005)
8 A. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, J. Biomed. Mater. Res., 51, 586 (2000)
9 C. H. Kim, H. -S. Park, Y. J. Gin, Y. Son, S. -H. Lim, Y. J. Choi, K. -S. Park, and C. W. Park, Macromol. Res., 12, 367 (2004)
10 S. Szuchet, K. Watanabe, and Y. Yamaguchi, Int. J. Dev. Neurosci., 18, 705 (2000)   DOI   ScienceOn
11 G. Freddi, P. Monti, M. Nagura, Y. Gotoh, and M. Tsukada, J. Polym. Sci.; Part B: Polym. Phys., 35, 841 (1997)
12 X. Chen, W. Li, and T. Yu, J. Polym. Sci.; Part B: Polym. Phys., 35, 2293 (1997)
13 C. Schugens, V. Maquet, C. Gradfils, R. Jerome, and P. Teyssie, J. Biomed. Mater. Res., 30, 449 (1996)
14 N. C. Braier and R. A. Jishi, J. Mol. Struct. (Theochem), 499, 51 (2000)
15 F. J. Hua, T. G. Park, and D. S. Lee, Polymer, 44, 1911 (2003)
16 J. M. Gomez-Vega, E. Saiz, A. P. Tomsia, G. W. Marshall, and S. J. Marshall, Biomaterials, 21, 105 (2000)
17 A. U. Daniels, K. P. Andriano, W. P. Smutz, M. K. O. Chang, and J. Heller, J. Appl. Biomater., 5, 51 (1994)   DOI   ScienceOn
18 L. Li, S. Ding, and C. Zhou, J. Appl. Polym. Sci., 91, 274 (2004)
19 D. L. Ellis and I. V. Yannas, Biomaterials, 17, 291 (1996)
20 F. Zhao, Y. Yin, W. W. Lu, J. C. Leong, W. Zhang, J. Zhang, M. Zhang, and K. Yao, Biomaterials, 23, 3227 (2002)
21 C. J. Brine, P. A. Sandford, and J. P. Zikakis, Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992
22 H. Nishikawa, A. Ueno, S. Nishikawa, J. Kido, M. Ohishi, H. Inoue, and T. Nagata, J. Endodontics, 26, 169 (2000)
23 T. Kokubo, H. Kim, and M. Kawashita, Biomaterials, 24, 2161 (2003)   DOI   ScienceOn
24 L. L. Whinnery, W. R. Even, J. V. Beach, and D. A. Loy, J. Polym Sci., Polym. Chem., 34, 1623 (1996)
25 G. D. Kang, K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park, Macromol. Res., 12, 534 (2004)
26 H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001)   DOI   ScienceOn
27 E. Wintermantel, J. Mayer, J. Blum, K. L. Eckert, P. Luscher, and M. Mathey, Biomaterials, 17, 83 (1996)
28 D. K. Kim and H. S. Kim, Polymer(Korea), 29, 408 (2005)
29 R. A. A. Muzzarelli, G. Biagini, A. DeBenedittis, P. Mengucci, G. Majni, and G. Tosi, Carbon. Polym., 45, 35 (2001)   DOI   ScienceOn
30 I. Yamaguchi, S. Itoh, M. Suzuki, A. Osaka, and J. Tanaka, Biomaterials, 24, 3285 (2003)   DOI   ScienceOn
31 Y. Miyamoto, K. Ishikawa, M. Takechi, T. Toh, T. Yuasa, M. Nagayama, and K. Suzuki, Biomaterials, 19, 707 (1998)
32 V. M. Rusu, C. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M. G. Peter, Biomaterials, 26, 5414 (2005)
33 R. Murugan and S. Ramakrishna, Biomaterials, 25, 3829 (2004)
34 N. Shanmugasundaram, P. Ravichandran, P. N. Reddy, N. Ramamurty, S. Pal, and K. P. Rao, Biomaterials, 22, 1943 (2001)   DOI   ScienceOn
35 C. Zahraoui and P. Sharrock, Bone, 25, 63 (1999)
36 S. J. Park, K. Y. Lee, W. S. Ha, and S. Y. Park, J. Appl. Polym. Sci., 74, 2571 (1999)
37 Y. Zhang and M. Zhang, J. Biomed. Mater. Res., 55, 304 (2001)   DOI   ScienceOn
38 J. K. Suh and H. W. Matthew, Biomaterials, 21, 2589 (2000)
39 N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mat. Res., 29, 1215 (1995)
40 A. Steinbuchel and R. H. Marchessault, Biopolymers for Medical and Pharmaceutical Applications, Wiley-VCH, Weinheim, 2005
41 H. -J. Jin, M. -O. Hwang, J. S. Yoon, K. H. Lee, I. -J. Chin, and M. -N. Kim, Macromol. Res., 13, 73 (2005)
42 P. V. Vandevord, H. W. T. Matthew, S. P. Desilva, L. Mayton, B. Wu, and P. H. Wooley, J. Biomed. Mater. Res., 58, 585 (2002)
43 M. Ishihara, K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Uenoyama, and A. Kurita, Biomaterials, 23, 833 (2002)
44 J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003)   DOI   ScienceOn