Characterization of Site-Specific Recombination by the Integrase MJ1 from Enterococcal Bacteriophage ${\Phi}FC1$

  • Park, Mi-Ok (School of Life Sciences and Biotechnology, Korea University) ;
  • Lim, Ki-Hong (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Tae-Hyung (Department of Biochemistry, Chosun University School of Medicine) ;
  • Chang, Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2007.02.28

Abstract

Bacteriophage ${\Phi}FC1$ integrase (MJ1) was previously shown to perform a site-specific recombination between a phage attachment site (attP) and a host attachment site (attB) in its host, Enterococcus faecalis, and also in a non-host bacterium, Escherichia coli. Here, we investigated biochemical features of MJ1 integrase. First, MJ1 integrase could perform in vitro recombination between attP and attB in the absence of additional factors. Second, MJ1 integrase interacted with att sites. Electrophoretic mobility shift assays and DNase I footprinting revealed that MJ1 integrase could efficiently bind to all the att sites and that MJ1 integrase recognized relatively short sequences (${\sim}50bp$) containing an overlapping region within attB and attP. These results demonstrate that MJ1 integrase indeed catalyzes an integrative recombination between attP and attB, the mechanism of which might be simple and unidirectional, as found in serine integrases.

Keywords

References

  1. Bertoni, C., S. Jarrahian, T. M. Wheeler, Y. Li, E. C. Olivares, M. P. Calos, and T. A. Rando. 2006. Enhancement of plasmidmediated gene therapy for muscular dystrophy by directed plasmid integration. Proc. Natl. Acad. Sci. USA 103: 419-424
  2. Bibb, L. A. and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, $\phi$Rv1. Mol. Microbiol. 45: 1515-1526 https://doi.org/10.1046/j.1365-2958.2002.03130.x
  3. Bibb, L. A., M. I. Hancox, and G. F. Hatfull. 2005. Integration and excision by the large serine recombinase $\phi$Rv1 integrase. Mol. Microbiol. 55: 1896-1910 https://doi.org/10.1111/j.1365-2958.2005.04517.x
  4. Breuner, A., L. Brondsted, and K. Hammer. 1999. Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J. Bacteriol. 181: 7291-7297
  5. Breuner, A., L. Brondsted, and K. Hammer. 2001. Resolvaselike recombination performed by the TP901-1 integrase. Microbiology 147: 2051-2063
  6. Chalberg, T. W., J. L. Portlock, E. C. Olivares, B. Thyagarajan, P. J. Kirby, R. T. Hillman, J. Hoelters, and M. P. Calos. 2006. Integration specificity of phage$\phi$C31 integrase in the human genome. J. Mol. Biol. 357: 28-48 https://doi.org/10.1016/j.jmb.2005.11.098
  7. Christiansen, B., L. Brondsted, F. K. Vogensen, and K. Hammer. 1996. A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. J. Bacteriol. 178: 5164-5173
  8. Groth, A. C. and M. P. Calos. 2003. Phage integrases: Biology and applications. J. Mol. Biol. 335: 667-678 https://doi.org/10.1016/j.jmb.2003.09.082
  9. Hakimi, J. M. and J. J. Scocca. 1994. Binding sites for bacteriophage HP1 integrase on its DNA substrates. J. Biol. Chem. 269: 21340-21345
  10. Kim, S. Y. and J. Y. Cho. 2005. A modified PCR-directed gene replacements method using $\lambda$-Red recombination functions in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352
  11. Kim, Y. W. and H. I. Chang. 1994. Isolation and molecular characterization of $\phi$FC1, a new temperate phage from Enterococcus faecalis. Mol. Cells 4: 155-158
  12. Landy, A. 1998. Dynamic, structural, and regulatory aspects of site-specific recombination. Annu. Rev. Biochem. 58: 913-949 https://doi.org/10.1146/annurev.bi.58.070189.004405
  13. Lauer, P., M. Y. Chow, M. J. Loessner, D. A. Portnoy, and R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184: 4177-4186 https://doi.org/10.1128/JB.184.15.4177-4186.2002
  14. Moitoso de Vargas L., S. Kim, and A. Landy. 1989. DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase. Science 244: 1457-1461 https://doi.org/10.1126/science.2544029
  15. Numrych, T. E., R. I. Gumport, and J. F. Gardner. 1992. Characterization of the bacteriophage lambda excisionase (Xis) protein: C-terminus is required for Xis-integrase cooperativity but not for DNA binding. EMBO. J. 11: 3797- 3806
  16. Olivares, E. C., R. P. Hollis, and M. P. Calos. 2001. Phage R4 integrase mediates site-specific integration in human cells. Gene 278: 167-176 https://doi.org/10.1016/S0378-1119(01)00711-9
  17. Ross, W., A. Landy, Y. Kikuchi, and H. Nash. 1979. Interaction of int protein with specific sites on $\lambda$ att DNA. Cell 18: 297-307 https://doi.org/10.1016/0092-8674(79)90049-7
  18. Ross, W. and A. Landy. 1982. Bacteriophage lambda Int protein recognizes two classes sequence in the phage att site: Characterization of arm-type sites. Proc. Natl. Acad. Sci. USA 79: 7724-7728
  19. Tomar, R. S., H. Matta, and P. M. Chaudhary. 2003. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22: 5712-5715 https://doi.org/10.1038/sj.onc.1206733
  20. Thorpe, H. M., S. E. Wilson, and M. C. M. Smith. 2000. Control of directionality in the site-specific recombination system of the Streptomyces phage $\phi$C31. Mol. Microbiol. 38: 232-241 https://doi.org/10.1046/j.1365-2958.2000.02142.x
  21. Yagil, E. S., S. Dolev, J. Oberto, N. Kislev, N. Ramaiah, and R. A. Weisberg. 1989. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J. Mol. Biol. 207: 695- 717 https://doi.org/10.1016/0022-2836(89)90238-6
  22. Yang, H. Y., Y. W. Kim, and H. I. Chang. 2002. Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage $\phi$FC1. J. Bacteriol. 184: 1859-1864 https://doi.org/10.1128/JB.184.7.1859-1864.2002