참고문헌
- Bassett, D. E. Jr., M. S. Boguski, and P. Hieter. 1996. Yeast genes and human disease. Nature 379: 589-590 https://doi.org/10.1038/379589a0
- Bilinski, J., Z. Krawiec, A. Liczmanski, and J. Litwinska. 1995. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun. 130: 533- 539 https://doi.org/10.1016/0006-291X(85)90449-8
- Bro, C., B. Regenberg, G. Lagniel, J. Labarre, M. Montero- Lomelí, and J. Nielsen. 2003. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J. Biol. Chem. 278: 32141-32149 https://doi.org/10.1074/jbc.M304478200
- Cabiscol, E., E. Piulats, P. Echave, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393- 27398
- Chae, H., I. H. Kim, K. Kim, and S. Rhee. 1993. Cloning, sequencing and mutation of thiol specific antioxidant gene of Saccharomyces cerevisiae. J. Biol. Chem. 268: 16815- 16821
- Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
- de Nobel, H., L. Lawrie, S. Brul, F. Klis, M. Davis, H. Alloush, and P. Coote. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acidstressed Saccharomyces cerevisiae. Yeast 18: 1413-1428 https://doi.org/10.1002/yea.793
- Derek, J. J. 1998. Oxidative stress responses of the Saccharomyces cerevisiae. Yeast 14: 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
-
Godon, C., G. Lagniel, J. W. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B. Toledano, and J. Labarre. 1998. The
$H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480-22489 https://doi.org/10.1074/jbc.273.35.22480 - Graeme, M. W. 1998. Yeast growth, pp. 167-169. In M. W. Graeme (ed.), Yeast Physiology and Biotechnology. John Wiley & Sons Ltd, Chichester
- Gralla, E. B. and J. S. Valentine. 1991. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: Characterization and spontaneous mutation rates. J. Bacteriol. 173: 5918-5920 https://doi.org/10.1128/jb.173.18.5918-5920.1991
- Hamdan, M. and P. G. Righetti. 2005. Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology, pp. 69- 126. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A
- Issaq, H. J., T. D. Veenstra, T. P. Conrads, and D. Felschow. 2002. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292: 587-592 https://doi.org/10.1006/bbrc.2002.6678
- Jamnik, P. and P. Raspor. 2005. Methods for monitoring oxidative stress response in yeasts. J. Biochem. Mol. Toxicol. 19: 195-203 https://doi.org/10.1002/jbt.20091
- Keightley, J. A., L. Shang, and M. Kinter. 2004. Proteomic analysis of oxidative stress-resistant cells: A specific role for aldolase reductase overexpression in cytoprotection. Mol. Cell. Proteomics 3: 167-175 https://doi.org/10.1074/mcp.M300119-MCP200
- Kim, I. S., H. S. Yun, H. Iwahashi, and I. N. Jin. 2006. Genome-wide expression analyses of adaptive response against MD-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41: 2305-2313 https://doi.org/10.1016/j.procbio.2006.06.005
- Kim, I. S., H. S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi, and I. N. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249
- Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant for fuel alcohol production at higher temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 617-623
- Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 624-631
- Kolkman, A., M. Slijper, and A. Heck. 2005. Development and application of proteomics technologies in Saccharomyces cerevisiae. Trends Biotechnol. 23: 598-604 https://doi.org/10.1016/j.tibtech.2005.09.004
- Laemmli, U. K. 1979. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lee, J., D. Spector, C. Godon, J. Labarre, and M. B. Tolendano. 1996. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274: 4537-4544 https://doi.org/10.1074/jbc.274.8.4537
- Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, G. S. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
- Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi and I. N. Jin. 2003. Effect of trehalose on stabilization of cellular components and critical target against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
- Paik, S. K., H. S. Yun, H. S. Sohn, and I. N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
- Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723- 5732 https://doi.org/10.1074/jbc.275.8.5723
- Patterson, S. D. and R. H. Aebersold. 2003. Proteomics: The first decade and beyond. Nat. Genet. 33: 311-323 https://doi.org/10.1038/ng1106
- Pereira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1: 11 https://doi.org/10.1186/1471-2180-1-11
- Rehman, I., A. Azzouzi, J. Catto, and F. Hamdy. 2005. The use of proteomics in urological research. EAU Update Series 3: 171-179 https://doi.org/10.1016/j.euus.2005.09.002
- Toledano, M. B., A. Delaunay, B. Biteau, D. Spector, and D. Azevedo. 2003. Oxidative stress responses in yeast, pp. 241-304. In S. Hohnman, and E. H. Mager (eds.), Yeast Stress Responses. Springer-Verlag, Berlin
- Vido, K., D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474 https://doi.org/10.1074/jbc.M008708200
- Walker, G. M. and P. V. Dijck. 2006. Physiological and molecular responses of yeasts to the environment, pp. 111- 152. In A. Querol and G. Fleet (eds.), Yeasts in Food and Beverages. Springer-Verlag, Berlin
- Wei, J., J. Sun, W. Yu, A. Jones, P. Oeller, M. Keller, G. Woodnutt, and J. M. Short. 2005. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res. 4: 801-808 https://doi.org/10.1021/pr0497632
- Weinberger, S. R., E. Boschetti, P. Santambien, and V. Brenac. 2002. Surface-enhanced laser desorption-ionization retentate chromatographyTM mass spectrometry (SELDI-RCMS): A new method for rapid development of process chromatography conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782: 307-316 https://doi.org/10.1016/S1570-0232(02)00564-0
- Wenzel, T. J., A. Teunissen, and H. Steensma. 1995. PDA1 mRNA: A standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883-884 https://doi.org/10.1093/nar/23.5.883
- Wilson, M. A., C. V. St. Amour, J. L. Collins, D. Ringe, and G. A. Petsko. 2004. The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1/ThiJ/PfpI superfamily. Proc. Natl. Acad. Sci. USA 101: 1531-1536
- Yin, Z., D. Stead, L. Selway, J. Walker, I. Riba-Garcia, T. Mclnerney, S. Gaskell, S. G. Oliver, P. Cash, and A. J. Brown. 2004. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4: 2425-2436 https://doi.org/10.1002/pmic.200300760
- Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin, and H. Y. Sohn. 2004. Direct evidence of intracellular alkalization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249