DOI QR코드

DOI QR Code

Preparation and characterization of CdS nanoparticle on the surface of silica nanoparticles

실리카 나노입자 표면에 CdS 나노입자의 제조 및 평가

  • Kang, Yun-Ok (Department of Chemistry, BK 21 NanoBiosensor Research Team, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, BK 21 NanoBiosensor Research Team, Hannam University) ;
  • Gopalan, A. (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University)
  • Received : 2007.07.31
  • Accepted : 2007.10.01
  • Published : 2007.10.25

Abstract

Poly(vinylpyrrolidone) stabilized cadmium sulfide (CdS) nanoparticles were loaded onto the surface of silica ($SiO_2$) nanoparticles by using ${\gamma}$-irradiation. TEM micrograph reveals the presence of ~20nm sized CdS nanoparticles on the surface of $SiO_2$ nanoparticles. XRD patterns confirm the crystalline. PL spectra of the simple PVP-stabilized CdS nanoparticle and $SiO_2$@CdS composite confirm the differences in the emission characteristics between them. Two prominent emission peaks were noted around 550 nm and 600 nm for PVP-stabilized CdS nanoparticles). The emission peaks noted for the PVP-stabilized CdS nanoparticles were found to be blue shifted for $SiO_2$@CdS composites. Besides, an additional emission peak around 450 nm was noticed for the $SiO_2$@CdS composite. The presence of CdS nanoparticles influence the emission characteristics and induce quantum confinement effect.

방사선 방법에 의해 실리카 나노입자에 CdS 나노입자를 코팅하였다. TEM분석결과, $SiO_2$ 나노입자 표면에 CdS의 입자의 크기는 대략 20 nm임을 확인 하였다. 또한, XRD 분석결과 결정체 화합물임을 확인하였다. PL 분석결과 PVP-CdS 나노입자와 $SiO_2$@CdS 복합체의 경우, 방출특성이 상당히 다르다는 것이 확인되었다. PVP-CdS의 경우, 방출스펙트럼이 550 nm-600 nm 에서 나타나고, $SiO_2$@CdS의 방출스펙트럼의 경우 단파장 이동함을 확인하였다. 또한 새로운 피이크 (450 nm) 나타남을 확인하였는데, 이는 CdS 의 유발양자 제한 효과에 의한 것으로 사료된다.

Keywords

References

  1. S. Chang, L. Liu, and S. A. Asher, J. Am. Chem. Soc., 116, 6739-6744 (1994) https://doi.org/10.1021/ja00094a032
  2. S. G. Lu, Y. J. Yu, C. L. Mak, K. H. Wong, L. Y. Zhang, and X. Yao, Microelectronic Engineering, 66, 171-179 (2003) https://doi.org/10.1016/S0167-9317(03)00043-1
  3. T. Hayakawa, S. T. Selvan, and M. Nogami, J. Lumin., 87-89, 532-534 (2000)
  4. D. Wu, X. Ge, Y. Huang, Z. Zhang, and Q. Ye, Mater. Lett., 57, 3549-3553 (2003) https://doi.org/10.1016/S0167-577X(03)00123-X
  5. R. L. Sherman, Y. Chen, and W. T. Ford, J. Nanosci. Nanotech., 4(8), 1032-1038 (2004) https://doi.org/10.1166/jnn.2004.138
  6. F. El-Tantawy, K. M. Abdel-Kader, F. Kaneko, and Y. K. Sung, European Polym. J. 40, 415-430 (2004) https://doi.org/10.1016/j.eurpolymj.2003.10.013
  7. W. Chen, Z. Wang, and L. Lin, J. Luminescence, 71, 151-156 (1997) https://doi.org/10.1016/S0022-2313(96)00129-9
  8. W. Chen, Z. G. Wang, Z. J. Lin, and L. Y. Lin, Solid State Communications, 101(5), 371-375 (1997) https://doi.org/10.1016/S0038-1098(96)00530-3
  9. S. T. Selvan, C. Bullen, M. Ashokkumar, and P. Mulvaney, Adv. Mater., 13, 985 (2001)
  10. S. D. Oh, S. Lee, S. H. Choi, I. S. Lee, Y. M. Lee, J. H. Chun, and H. J. Park, Colloids Surf. A, 275(1-3), 228-233 (2006) https://doi.org/10.1016/j.colsurfa.2005.11.039
  11. S. H Choi, Y. P. Zhang, A. Gopalan, K. P. Lee, and H. D. Kang, Colloids Surfaces A, 256, 165-170 (2005) https://doi.org/10.1016/j.colsurfa.2004.07.022
  12. S. D. Oh, B. K. So, S. H. Choi, A. Gopalan, K. P. Lee, K. R. Yoon, and I. S. Choi, Mater. Lett., 59, 1121-1124 (2005) https://doi.org/10.1016/j.matlet.2004.10.080
  13. Y. Xie, Z. Qiao, M. Chen, Y. Zhu, and Y. T. Qian, NanoStructured Materials, 11(8), 1165-1169 (1999) https://doi.org/10.1016/S0965-9773(99)00407-9
  14. S. H. Choi, M. S. Choi, K. P. Lee, and H. D. Kang, J. Appl. Polym. Sci., 91(4), 2335-2342 (2004) https://doi.org/10.1002/app.13375
  15. Y. O. Kang, S. H. Choi, A. Gopalan, K. P. Lee, H. D. Kang, and Y. S. Song, J. Appl. Polym. Sci., 100(3), 1809-1815 (2006) https://doi.org/10.1002/app.23078
  16. V. P. Singh, R. S. Singh, G. W. Thompson, V. Jayaraman, S. Sanagapalli, and V. K. Rangari, Solar Energy Materials and Solar Cells, 81(3), 293-303 (2004) https://doi.org/10.1016/j.solmat.2003.11.007
  17. H. P. Klug, and L. E. Alexander, 1974. X-ray diffraction procedure for polycrystalline and amorphous materials Wiley, New York, 652-660 (Chapter 9)
  18. F. Zezza, R. Comparelli, M. Striccoli, M. L. Curri, R. Tommasic, A. Agostiano, and M. M. Della, Synth. Met., 139, 597 (2003) https://doi.org/10.1016/S0379-6779(03)00320-5
  19. S. H. Liu, X. F. Qian, J. Yin, X. D. Ma, J. Y. Yuan, and Z. K. Zhu, J. Phys. Chem. Solid., 64, 455 (2003) https://doi.org/10.1016/S0022-3697(02)00333-5
  20. Y. Wang, and N. J. Herron, J. Phys. Chem., 92, 4988 (1988) https://doi.org/10.1021/j100315a026
  21. W. Chen, Z. G. Wang, Z. J. Lin, and L. Y. Lin, J. Appl. Phys., 82, 3111 (1997)