Effect of NaCl on Halomonas subglaciescola DH-1 Incapable of Growing at Non-Salinity

Halomonas subglaciescola DH-1의 생장에 미치는 염화나트륨의 영향

  • Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University) ;
  • Yoo, Young-Sun (Department of Applied Chemistry, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • 나병관 (서경대학교 생물공학과) ;
  • 유영선 (서경대학교 응용화학과) ;
  • 박두현 (서경대학교 생물공학과)
  • Published : 2007.12.28

Abstract

A halophilic bacterium, H. subglaciescola DH-1, grew at 2.0 M salinity, but did not grow at 0.8 M salinity when cultivated at higher temperature ($40^{\circ}C$) than optimum ($30^{\circ}C$). When the cell extract of strain DH-1 was heated at $50^{\circ}C$ for 60 min in the absence of NaCl, isocitrate dehydrogenase and malate dehydrogenase lost their activities, but when it was heated in the presence of 2.0 M NaCl, the activity was maintained. Meanwhile, the cell extract of E. coli did not catalyze the reduction of $NAD^+$ to NADH coupled with the oxidation of isocitrate and malate at higher salinities than 1.0 M. The pH range for DH-1 was 7 to 10, and that for E. coli was 5 to 9. DH-1 was not grown in conditions with sodium salts other than NaCl.

호염성세균 H. subglaciescola DH-1은 염화나트륨이 없거나 0.8 M 이하로 존재하는 환경에서 생장하지 못한다. 이 호혐성세균은 2.0 M의 염화나트륨이 존재하는 조건에서는 최적온도($30^{\circ}C$)보다 높은 $40^{\circ}C$에서 생장이 가능하였으나, 0.8 M의 염화나트륨이 존재하는 조건에서는 생장이 크게 저하되었다. 세포추출물을 염화나트륨이 존재하는 조건에서 $50^{\circ}C$로 1시간 동안 열처리하였을 때 세포내 효소의 활성이 유지되었으나, 염화나트륨이 없는 조건에서 열처리하였을 때 효소의 활성은 유지되지 않았다. 반면, 대장균의 세포추출물의 효소활성은 1.0 M이상의 염화나트륨이 존재할 때 온도 또는 pH와 관계없이 측정되지 않았다. H. subglaciescola DH-1은 pH $7{\sim}10$의 범위에서 생장하였고, 생장을 위한 최적 pH는 8이었다. 이러한 생리적인 특성으로부터 염화나트륨은 H. subglaciescola DH-1의 물질대사를 위한 필수적인 무기영양소라는 사실을 유추할 수 있다.

Keywords

References

  1. Abee, T., K. J. Hellingwerf, and W. N. Konings. 1988. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. J. Bacteriol. 170: 5647-5653 https://doi.org/10.1128/jb.170.12.5647-5653.1988
  2. Adams, R., J. Bygraves, M. Kogul, and N. J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133: 1861-1870
  3. Amezaga, M. R. and I. R. Booth. 1999. Osmoprotection of Escherichia coli by peptone is mediated by the uptake and accumulation of free proline but not of proline-containing peptides. Appl. Envir. Microbiol. 65: 5272-5278
  4. Barth, S., M. Huhn, B. Matthey, A. Klimka, E. A. Galinski, and A. Engert. 2000. Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Envir. Microbiol. 66: 1572-1579 https://doi.org/10.1128/AEM.66.4.1572-1579.2000
  5. Boch, J., B. Kempt, and E. Bremer. 1994. Osmorgulation in Bacillus subtilis. Synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol. 176: 5364-5371 https://doi.org/10.1128/jb.176.17.5364-5371.1994
  6. Boch, J., B. Kempf, R. Schmid, and E. Bremer. 1996. Synthesis of the osmoprotectant glycine-betaine in Bacillus subtilis: characterization of gbsAB gene, J. Bacteriol. 178: 5121-5129 https://doi.org/10.1128/jb.178.17.5121-5129.1996
  7. Canovas D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1998. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl. Environ. Microbiol. 64: 4095-4097
  8. Choquet, C. G., I. Ahoshai, M. Klein, and D. J. Kushner. 1991. Formation and role of glycine betaine in the moderate halophile Vibrio costicola: site for action of $Cl^-$ ions. J. Bacteriol. 171: 880-886
  9. Ciulla, R. A., M. R. Diza, B. F. Taylor, and M. F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Micrbiol. 63: 220-226
  10. Cummings, S. P. and D. J. Gilmour. 1995. The effect of NaCI on the growth of Halomonas species: accumulation and utilization of compatible solutes. Microbiology 141: 1413-1418 https://doi.org/10.1099/13500872-141-6-1413
  11. Del Moral, A., J. Severin, A. Ramos-Cormenzana, H. G. Truper, and E. A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122: 165-172 https://doi.org/10.1111/j.1574-6968.1994.tb07160.x
  12. Dobson, S. J. and P. D. Frenzmann. 1996. Unification of the genera Deleya, Halomonas, and Halovibrio and the species Parcoccus halodenitrificans into a single genus, Halomonas and placement of the genus Zymobacter in the family Halomondaceae. Int. J. Syst. Bacteriol. 46: 550-558 https://doi.org/10.1099/00207713-46-2-550
  13. Fendrich, C. 1986. Halovibrio variabilis gen. nov. sp. nov. Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt lake, Utah. Syst. Appl. Microbiol. 11: 36-43
  14. Frings, E., H. J. Junte, and E. A. Galinski. 1993. Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidine and glutamine. FEMS Microbiol. Lett. 109: 25-32 https://doi.org/10.1111/j.1574-6968.1993.tb06138.x
  15. Frings, E., T. Sauer, and E. A. Glinski. 1995. Production of hydroxyectoin: high cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43: 53-61 https://doi.org/10.1016/0168-1656(95)00119-2
  16. Galinski, E. A .1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 19: 273-328
  17. Grarnmann, K., A. Volke, and H. J. Ktinte. 2002. New type of osmoregulated solute transporter identified in Halophilic members of the Bacteria Domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongate DSM2581. J. Bacteriol. 184: 3078-3085 https://doi.org/10.1128/JB.184.11.3078-3085.2002
  18. Hagemann, M., S. Richter, and S. Mikkat. 1996. The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. J. Bacteriol. 179:714-720
  19. Kobayashi, T., H. Kanai, T. Hayashi, T. Akiba, R. Akaboshi, and K. Horikoshi. 1992. Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J. Bacteriol. 174: 3439-3444 https://doi.org/10.1128/jb.174.11.3439-3444.1992
  20. Kraegeloh, A and H. J. Kunte. 2002. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles. 6: 453-462 https://doi.org/10.1007/s00792-002-0277-4
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  22. Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the oxmolyted glycine betaine in the halophilic methanoarchaeon Methanolhalophilus protucafensis. Appl. Environ. Microbiol. 65: 828-833
  23. Mellado, E., M. T. Garcia, J. J. Nieto, K. N. Timmis, and A. Veatosa. 1995. Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Vocaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina. comb. nov. Int. Syst. Bacteriol. 45: 712-716 https://doi.org/10.1099/00207713-45-4-712
  24. Mojica, F. J. M., E. Cisneros, C. Ferrer, F. Rodriguez-Valera, and G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongate and the Archaeon Haloferax volcanii. J. Bacteriol. 179: 5471-5481 https://doi.org/10.1128/jb.179.17.5471-5481.1997
  25. Neumann, S., U. Matthey, G. Kaim, and P. Dimroth. 1998. Purification and properties of the $F_lF_o$ ATPase of Ilyobacter tartaricus, a sodium ion pump. J. Bacteriol. 180: 3312-3316
  26. Ono, H., K. Sawadas, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium. Halomonas elongata. J. Bacterial. 181: 91-99
  27. Peterson, B. N. J. and M. L. Salin. 1993. Purification of a catalase-peroxidase from Halobacterium halobium: characterization of some unique properties of the halophilic enzyme. J. Bacteriol. 175: 4197-4202 https://doi.org/10.1128/jb.175.13.4197-4202.1993
  28. Peterson, B. N. J. and M. L. Salin. 1995. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobactertum halobium. J. Bacterial. 177: 378-384 https://doi.org/10.1128/jb.177.2.378-384.1995
  29. Prowe, S. G., Jack L. C. van de Vossenberg, A. J. M. Driessen, G. Antranikian, and W. N. Konings. 1996. Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J. Bacteirol. 178: 4099-4104 https://doi.org/10.1128/jb.178.14.4099-4104.1996
  30. Quesado, E., V. Bejar, M. J. Valderrama, and A. Ramons-Cormenzana. 1990. Vocaniella eurihalina gen. Nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacterial. 40: 261-267 https://doi.org/10.1099/00207713-40-3-261
  31. Ryu H. J., Y. J. Jeong, and D. H. Park. 2004. Growth and physiological properties of wild type and mutants of Halomonas subglaciescola DH-1 in saline environment. J. Microbial. 42: 174-180