• Title/Summary/Keyword: Halomonas subglaciescola

Search Result 3, Processing Time 0.021 seconds

Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment

  • Ryu, Hye Jeong;Jeong, Yoo Jung;Park, Doo Hyun
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.174-180
    • /
    • 2004
  • A halophilic bacterium was isolated from fermented seafood. The 16S rDNA sequence identity between the isolate and Halomonas subglaciescola AJ306801 was above 95%. The isolate that did not grow in the condition without NaCl or in the condition with other sodium (Na$\^$+/) or chloride ions (Cl$\^$-/) instead of NaCl was named H. subglaciescola DH-l. Two mutants capable of growing without NaCl were obtained by random mutagenesis, of which their total soluble protein profiles were compared with those of the wild type by two-dimensional electrophoresis. The external compatible solutes (betaine and choline) and cell extract of the wild type did not function as osmoprotectants, and these parameters within the mutants did not enhance their growth in the saline environment. In the proton translocation test, rapid acidification of the reactant was not detected for the wild type, but it was detected for the mutant in the condition without NaCl. From these results, we derived the hypothesis that NaCl may be absolutely required for the energy metabolism of H. subglaciescola DH-l but not for its osmoregulation, and the mutants may have another modified proton translocation system that is independent of NaCl, except for those mutants with an NaCl-dependent system.

Effect of NaCl on Halomonas subglaciescola DH-1 Incapable of Growing at Non-Salinity (Halomonas subglaciescola DH-1의 생장에 미치는 염화나트륨의 영향)

  • Na, Byung-Kwan;Yoo, Young-Sun;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.298-303
    • /
    • 2007
  • A halophilic bacterium, H. subglaciescola DH-1, grew at 2.0 M salinity, but did not grow at 0.8 M salinity when cultivated at higher temperature ($40^{\circ}C$) than optimum ($30^{\circ}C$). When the cell extract of strain DH-1 was heated at $50^{\circ}C$ for 60 min in the absence of NaCl, isocitrate dehydrogenase and malate dehydrogenase lost their activities, but when it was heated in the presence of 2.0 M NaCl, the activity was maintained. Meanwhile, the cell extract of E. coli did not catalyze the reduction of $NAD^+$ to NADH coupled with the oxidation of isocitrate and malate at higher salinities than 1.0 M. The pH range for DH-1 was 7 to 10, and that for E. coli was 5 to 9. DH-1 was not grown in conditions with sodium salts other than NaCl.

Physiology and Growth Properties of Halophilic Bacteria Isolated from Jeotgal (Salted Seafood) (젓갈(염장발효식품)에서 분리한 호염세균의 생리 및 성장특성)

  • Jung Yoo Jeong;Park Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • Two species of halophilic bacteria were isolated from five salted seafoods and identified by 16S rDNA sequenc­ing homology. One was identified as Halomonas subglaciescola and other four strains were belong to Halomo­nas marina. The identity of all isolates with standard organisms was above $95\%.$ H. subglaciescola, H. marina IN, and H. marina SH-2 grew in salinity condition from $3%\;to\;18\%$ NaCl but growth of H. marina SQ and H. marina SH-l grew in salinity environment from $8\%\;to\;17\%.$ Maximum biomass of H. subglaciescola, H. marina IN, H. marina SQ, H. marina SH-1, and H. marina SH-2 growing in LB medium containing $15\%$ NaCl were about 3.2, 4.5, 4.5, 5.7, and 4.2, however the maximum biomass in LB medium containing $5\%$ NaCl were about 2.2, 1.1, 0.7, 0.2, and 2.4 as optical density at 660 nm, respectively. In scanning electron micrograph, unknown material (mucus) attached to outer membrane of all isolates was observed. When mucus isolated from halophilic bacterial cell was added to culture of E. coli, E. coli grew in medium containing $15\%$ NaCl.