A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library

Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법

  • Park, Ju-Hee (Indang Institute of Molecular Biology, Inje University) ;
  • Han, Ok-Kyung (Indang Institute of Molecular Biology, Inje University) ;
  • Lee, Baek-Rak (School of Biotechnology and Biomedical Science, Inje University) ;
  • Kim, Jeong-Hyun (Indang Institute of Molecular Biology, Inje University)
  • 박주희 (인제대학교 인당분자생물학연구소) ;
  • 한옥경 (인제대학교 인당분자생물학연구소) ;
  • 이백락 (인제대학교 생명공학부) ;
  • 김정현 (인제대학교 인당분자생물학연구소)
  • Published : 2007.12.28

Abstract

A novel screening strategy for salt-resistant antimicrobial peptides from a M13 peptide library was developed. Fusion of MSI-344, a magainin derivative and indolicidin to pIII coat proteins did not significantly affect viability of the recombinant phages, which indicated that the pIII could neutralize toxicity of the antimicrobial peptides and therefore it is possible to construct antimicrobial peptide library in Escherichia coli. On the basis of the conserved sequence of ${\alpha}$-helical antimicrobial peptides, a semi-combinatorial peptide library was constructed in which the peptides were displayed by pIII. To remove hemolytic activity from the library, the phages bound to red blood cells were removed, and the subtracted phage library was screened for binding to target bacteria Pseudomonas aeruginosa and Staphylococcus aureus under high salt concentrations. The screened peptides showed relatively low antimicrobial activity against the target bacteria. However, antimicrobial activities of the screened peptides P06 and S18 were not affected by the cation concentrations of 150 mM $Na^+$, 2 mM $Mg^{2+}$ and 2 mM $Ca^{2+}$ without significant hemolytic activity. This screening strategy that is based on binding capacity to target cells provides new potential to develop salt-tolerant antimicrobial peptides.

생체 염 농도에서도 항균활성을 유지할 수 있는 선형 ${\alpha}$-helical 항균 펩타이드를 M13 펩타이드 라이브러리로부터 탐색할 수 있는 새로운 방법을 개발하였다. M13의 pIII은 magainin 유도체인 MSI-344와 indolicidin과 융합된 상태에서도 파아지의 viability에 영향을 주지 않는 것으로 보아, MSI-344와 indolicidin의 대장균에 대한 독성을 중화할 수 있는 것으로 판단되며, 따라서 대장균에서 항균 펩타이드 라이브러리의 제조가 가능함을 증명하였다. 선형 항균 펩타이드의 보존된 부위를 바탕으로, 13개의 아미노산 잔기로 구성된 semi-combinatorial 항균 펩타이드 라이브러리를 M13를 이용하여 제조하였다. 제조된 파아지 라이브러리는 먼저 적혈구에 흡착시켜, 높은 용혈 역가를 가질 가능성이 있는 파아지를 제거한 후, 높은 염 농도에서 Pseudomonas aeruginosa와 Staphylococcus aureus에 흡착할 수 있는 파아지를 탐색하였다. 탐색된 펩타이드들은 염이 없는 조건에서는 비교적 낮은 항균 역가를 보였지만, P06와 S18 펩타이드의 경우, 생체 염 농도보다 높은 150 mM $Na^+$, 2 mM $Mg^{2+}$, 2 mM $Ca^{2+}$의 조건에서도 항균 역가가 영향을 받지 않았으며, 심각한 용혈 역가 또한 보이지 않았다. 본 연구에서 개발한 대상 세균에 대한 흡착능력을 이용한 탐색방법은 salt-tolerant antimicrobial peptide의 개발의 새로운 가능성을 제시하였다.

Keywords

References

  1. Brown, K. L. and R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18: 24-30 https://doi.org/10.1016/j.coi.2005.11.004
  2. Deslouches, B., S. M. Phadke, V. Lazarevic, M. Cascio, K. Islam, R. C. Montelaro, and T. A. Mietzner. 2005. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob. Agents Chemother. 49: 316-322 https://doi.org/10.1128/AAC.49.1.316-322.2005
  3. Falla, T. J., D. N. Karunaratne, and R. E. Hancock. 1996. Mode of action of the antimicrobial peptide indolicidin. J. BioI. Chem. 271: 19298-19303 https://doi.org/10.1074/jbc.271.32.19298
  4. Friedrich, C., M. G. Scott, N. Karunaratne, H. Yan, and R. E. Hancock. 1999. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob. Agents Chemother. 43: 1542-1548
  5. Ge, Y., D. L. MacDonald, K. J. Holroyd, C. Thornsberry, H. Wexler, and Z. Zasloff. 1999. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43: 782-788
  6. Kliiver, E., S. Schulz-Maronde, S. Scheid, B. Meyer, W. G. Forssmann, and K. Adermann. 2005. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity, Biochemistry 44: 9804-9816 https://doi.org/10.1021/bi050272k
  7. Lee, J. H., J. H. Kim, S. S. Hong, H. S. Lee, and S. C. Kim. 1999. Multimeric expression of the antimicrobial peptide buforin IT in Escherichia coli by fusion to a cysteine-rich acidic peptide. J. Microbiol. Biotechnol. 9: 303-310
  8. Lee, J. H., J. H. Kim, S. W. Hwang, W. J. Lee, H. K. Yoon, H. S. Lee, and S. S. Hong. 2000. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun. 277: 575-580 https://doi.org/10.1006/bbrc.2000.3712
  9. Liu, D. and W. F. DeGrado. 2001. De novo design, synthesis, and characterization of antimicrobial beta-peptides. J. Am. Chem. Soc. 123: 7553-7559 https://doi.org/10.1021/ja0107475
  10. Marr, A. K., W. J. Gooderham, and R. E. Hancock. 2006. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6: 468-472 https://doi.org/10.1016/j.coph.2006.04.006
  11. Minahk, C. J. and R. D. Morero. 2003. Inhibition of enterocin CRL35 antibiotic activity by mono- and divalent ions. Lett. Appl. Microbiol. 37: 374-379 https://doi.org/10.1046/j.1472-765X.2003.01411.x
  12. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, U.S.A
  13. Shin, S. Y., S. T. Yang, E. J. Park, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm, and J. I. Kim. 2002. Salt Resistance and Synergistic Effect with Vancomycin of alpha-Helical Antimicrobial Peptide P18. Biochem. Biophys. Res. Commun. 290: 558-562 https://doi.org/10.1006/bbrc.2001.6234
  14. Tencza, S. B., J. P. Douglass, D. J. Creighton, R. C. Montelaro Jr., and T. A. Mietzner. 1997. Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins. Antimicrob. Agents Chemother. 41: 2394-2398
  15. Tomita, T., S. Hitomi, T. Nagase, H. Matsui, T. Matsuse, S. Kimura, and Y. Ouchi, 2000. Effect of ions on antibacterial activity of human beta defensin 2. Microbiol. Immunol. 44: 749-754 https://doi.org/10.1111/j.1348-0421.2000.tb02559.x
  16. Tassi, A., S. Luca, and G. Anna. 2000. Amphipathic, ${\alpha}-Helical$ Antimicrobial Peptides. Biopolymers 55: 4-30 https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  17. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395 https://doi.org/10.1038/415389a