References
- Bentley, S. D., K. F. Charter, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
- Bierman, N., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49 https://doi.org/10.1016/0378-1119(92)90627-2
- Boitel, B., M. Ortiz-Lombardía, R. Durán, F. Pompeo, S. T. Cole, C. Cerveñansky, and P. M. Alzari. 2003. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phosphor-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol. 49: 1493-1508 https://doi.org/10.1046/j.1365-2958.2003.03657.x
- Chong, Y., J. Young, J. Kim, Y. Lee, K. S. Park, J. H. Cho, H. J. Kwon, J. W. Suh, and Y. Lim. 2006. S-Adenosyl- L-methionine analogues to enhance the production of actinorhodin. J. Microbiol. Biotechnol. 16: 1154-1157
- Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genomic sequence. Nature 393: 537-544 https://doi.org/10.1038/31159
- Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890 https://doi.org/10.1093/nar/16.22.10881
- Duran, R., A. Villarino, M. Bellinzoni, A. Wehenkel, P. Fernandez, B. Boitel, S. T. Cole, P. M. Alzari, and C. Cervenansky. 2005. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun. 333: 858-867 https://doi.org/10.1016/j.bbrc.2005.05.173
- Kenelly, P. J. 2002. Protein kinases and protein phosphatases in prokaroytes: A genome perspective. FEMS Microbiol. Lett. 206: 1-8 https://doi.org/10.1111/j.1574-6968.2002.tb10978.x
- Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Centre, Norwich Research Park, England
- Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600 https://doi.org/10.1128/JB.185.2.592-600.2003
- Lee, Y., J. Young, H. J. Kwon, J. W. Suh, J. Kim, Y. Chong, and Y. Lim. 2006. AdoMet derivatives induce the production of actinorhodin in Streptomyces coelicolor. J. Microbiol. Biotechnol. 16: 965-968
- Mandec, E., A. Stensballe, S. Kjellström, L. Cladière, M. Obuchowski, O. N. Jensen, and S. J. Seror. 2003. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J. Mol. Biol. 330: 459-472 https://doi.org/10.1016/S0022-2836(03)00579-5
- Matsumoto, A., S. K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146: 47-57 https://doi.org/10.1016/0378-1119(94)90832-X
- Ogawa, H., N. Aoyagi, M. Watanabe, and H. Urabe. 1999. Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145: 3343-3352 https://doi.org/10.1099/00221287-145-12-3343
- Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deciphering the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220
- Petrickova, K. and M. Petricek. 2003. Eukaryotic-type protein kinases in Streptomyces coelicolor: Variation on a common theme. Microbiology 149: 1609-1621 https://doi.org/10.1099/mic.0.26275-0
- Rajkanikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2006. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr. Microbiol. 53: 204-208 https://doi.org/10.1007/s00284-006-0062-1
- Tomono, A., M. Mashiko, T. Shimazu, H. Inoue, H. Nagasawa, M. Yoshida, Y. Ohnishi, and S. Horinouchi. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123 https://doi.org/10.1038/ja.2006.18
- Umeyama, T., P. C. Lee, K. Ueda, and S. Hourinochi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292 https://doi.org/10.1099/00221287-145-9-2281
- Umeyama, T., P. C. Lee, and S. Hourinochi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425 https://doi.org/10.1007/s00253-002-1045-1
- Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881 https://doi.org/10.1128/jb.171.11.5872-5881.1989
- Young, T. A., B. Delagoutte, J. A. Endrizzi, A. M. Falick, and T. Alber. 2003. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10: 168-174 https://doi.org/10.1038/nsb897
- Yoon, G. S., K. H. Ko, H. W. Kang, J. W. Suh, Y. S. Kim, and Y. W. Ryu. 2006. Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enz. Microb. Technol. 39: 466-473 https://doi.org/10.1016/j.enzmictec.2005.11.049
- Zhang, C. C. 1996. Bacterial signaling involving eukaryotictype protein kinases. Mol. Microbiol. 20: 9-15 https://doi.org/10.1111/j.1365-2958.1996.tb02483.x
- Zhao, X. Q., Y. Y. Jin, H. J. Kwon, Y. Y. Yang, and J. W. Suh. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932