Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System

  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University) ;
  • Park, Seong-Joo (Department of Microbiology and Biotechnology, Daejeon University) ;
  • Kim, Sang-Jong (School of Biological Sciences, College of Natural Sciences, Seoul National University)
  • Published : 2007.09.30

Abstract

To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.

Keywords

References

  1. Alonso, J. L., A. Soriano, O. Carbajo, I. Amoros, and H. Garelick. 1999. Comparison and recovery of Escherichia coli and thermotolerant coliforms in water with a chromogenic medium incubated at 41 and$44.5^{\circ}C$. Appl. Environ. Microbiol. 65: 3746-3749
  2. American Public Health Association. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. Washington, DC, U.S.A
  3. Baffone, W., B. Citterio, E. Vittoria, A. Casaroli, R. Campana, L. Falzano, and G. Donelli. 2003. Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int. J. Food Microbiol. 89: 31-39 https://doi.org/10.1016/S0168-1605(03)00102-8
  4. Barer, M. R., L. T. Gribbon, C. R. Harwood, and C. E. Nwoguh. 1993. The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4: 183-191 https://doi.org/10.1097/00013542-199310000-00001
  5. Baudart, J., J. Coallier, P. Laurent, and M. Prévost. 2002. Rapid and sensitive enumeration of viable diluted cells of members of the family Enterobacteriaceae in freshwater and drinking water. Appl. Environ. Microbiol. 68: 5057-5063 https://doi.org/10.1128/AEM.68.10.5057-5063.2002
  6. Block, J. C., K. Haudidier, J. L. Paquin, J. Miazga, and Y. Levi. 1993. Biofilm accumulation in drinking water distribution systems. Biofouling 6: 333-343 https://doi.org/10.1080/08927019309386235
  7. Boe-Hansen, R., H.-J. Albrechtsen, E. Arvin, and C. Jorgensen. 2002. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 36: 4477-4486 https://doi.org/10.1016/S0043-1354(02)00191-4
  8. Butterfield, P. W., A. K. Camper, B. D. Ellis, and W. L. Jones. 2002. Chlorination of model drinking water biofilm: Implications for growth and organic carbon removal. Water Res. 36: 4391-4405 https://doi.org/10.1016/S0043-1354(02)00148-3
  9. Chang, Y. C., M. L. Puil, J. Biggerstaff, A. A. Randall, A. Schulte, and J. S. Taylor. 2003. Direct estimation of biofilm density on different pipe material coupons using a specific DNA-probe. Mol. Cell Probe 17: 237-243 https://doi.org/10.1016/j.mcp.2003.07.004
  10. Chang, Y. C. and K. Jung. 2004. Effect of distribution system materials and water quality on heterotrophic plate count and biofilm proliferation. J. Microbiol. Biotechnol. 14: 1114-1119
  11. Ellis, B. D., P. Butterfield, W. L. Jones, G. A. McFeters, and A. K. Camper. 2000. Effects of carbon source, carbon concentration, and chlorination on growth related parameters of heterotrophic biofilm bacteria. Microb. Ecol. 38: 330-347 https://doi.org/10.1007/s002489901003
  12. Gauthier, V., S. Redercher, and J.-C. Block. 1999. Chlorine inactivation of Sphingomonas cells attached to goethite particles in drinking water. Appl. Environ. Microbiol. 65: 355-357
  13. Lee, D.-G. and S.-J. Kim. 2003. Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J. Appl. Microbiol. 95: 317-324 https://doi.org/10.1046/j.1365-2672.2003.01978.x
  14. Lee, D.-G., J.-H, Lee, and S.-J. Kim. 2005. Diversity and dynamics of bacterial species in a biofilm at the end of the Seoul water distribution system. World J. Microb. Biot. 21: 155-162 https://doi.org/10.1007/s11274-004-2890-0
  15. Lee, D.-G., S.-J. Kim, and S. J. Park. 2006. Effect of reservoirs on microbiological water qualities in a drinking water distribution system. J. Microbiol. Biotechnol. 16: 1060-1067
  16. Lehtola, M. J., I. T. Miettinen, T. Lampola, A. Hirvonen, T. Vartiainen, and P. J. Martikainen. 2005. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 39: 1962-1971 https://doi.org/10.1016/j.watres.2005.03.009
  17. Norton, C. D. and M. W. LeChevallier. 2000. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. 66: 268-276 https://doi.org/10.1128/AEM.66.1.268-276.2000
  18. Park, S. R., W. G. Mackay, and D. C. Reid. 2001. Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system. Water Res. 35: 1624-1626 https://doi.org/10.1016/S0043-1354(00)00582-0
  19. Piriou P., S. Dukan, and L. Kiene. 1998. Modelling bacteriological water quality in drinking water distribution systems. Water Sci. Technol. 38: 299-307
  20. Schwartz, T., S. Hoffmann, and U. Obst. 2003. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J. Appl. Microbiol. 95: 591-601 https://doi.org/10.1046/j.1365-2672.2003.02019.x
  21. Thomas, V., T. Bouchez, V. Nicolas, S. Robert, J. F. Loret, and Y. Levi. 2004. Amoebae in domestic water systems: Resistance to disinfection treatments and implication in Legionella persistence. J. Appl. Microbiol. 97: 950-963 https://doi.org/10.1111/j.1365-2672.2004.02391.x
  22. U.S. Environmental Protection Agency. 1989. Guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. Office of Water, U.S. Environmental Protection Agency, Washington, D.C
  23. Wasche, S., H. Horn, and D. C. Hempel. 2002. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 36: 4775-4784 https://doi.org/10.1016/S0043-1354(02)00215-4
  24. Weichart, D., J. D. Oliver, and S. Kjelleberg. 1992. Lowtemperature induced nonculturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100: 205-210 https://doi.org/10.1111/j.1574-6968.1992.tb14041.x
  25. Wong, H.-C., P. Wang, S.-Y. Chen, and S.-W. Chiu. 2004. Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol. Lett. 233: 269-275 https://doi.org/10.1111/j.1574-6968.2004.tb09491.x
  26. Yoon, T. H. and Y. J. Lee. 2004. Bacterial regrowth in water distribution systems and its relationship to the water quality: Case study of two distribution systems in Korea. J. Microbiol. Biotechnol. 14: 262-267
  27. Zacheus, O. M., E. K. Iivanainen, T. K. Nissinen, M. J. Lehtola, and P. J. Martikainen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63-70 https://doi.org/10.1016/S0043-1354(99)00113-X