Browse > Article

Two Threonine Residues Required for Role of AfsKav in Controlling Morphogenesis and Avermectin Production in Streptomyces avermitilis  

Rajkarnikar, Arishma (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Kwon, Hyung-Jin (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University)
Suh, Joo-Won (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1563-1567 More about this Journal
Abstract
AfsKav is a eukaryotic-type serine/threonine protein kinase, required for sporulation and avermectin production in Streptomyces avermitilis. In terms of their ability to complement SJW4001 (${\Delta}afsK$-av), afsK-av mutants T165A and T168A were not functional, whereas mutants T165D and T168D retained their ability, indicating that Thr-165 and Thr-168 are the phosphorylation sites required for the role of AfsKav. Expression of the S-adenosylmethione synthetase gene promoted avermectin production in the wild-type S. avermitilis, yet not in the mutant harboring T168D or T165D, demonstrating that tandem phosphorylation on Thr-165 and Thr-168 in AfsKav is the mechanism modulating avermectin production in response to S-adenosylmethione accumulation in S. avermitilis.
Keywords
Streptomyces avermitilis; AfsKav; phosphorylation residue; site-directed mutagenesis; avermectin production;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genomic sequence. Nature 393: 537-544   DOI   ScienceOn
2 Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890   DOI   ScienceOn
3 Matsumoto, A., S. K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146: 47-57   DOI   ScienceOn
4 Ogawa, H., N. Aoyagi, M. Watanabe, and H. Urabe. 1999. Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145: 3343-3352   DOI
5 Young, T. A., B. Delagoutte, J. A. Endrizzi, A. M. Falick, and T. Alber. 2003. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10: 168-174   DOI   ScienceOn
6 Yoon, G. S., K. H. Ko, H. W. Kang, J. W. Suh, Y. S. Kim, and Y. W. Ryu. 2006. Characterization of S-adenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enz. Microb. Technol. 39: 466-473   DOI   ScienceOn
7 Boitel, B., M. Ortiz-Lombardía, R. Durán, F. Pompeo, S. T. Cole, C. Cerveñansky, and P. M. Alzari. 2003. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phosphor-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol. 49: 1493-1508   DOI   ScienceOn
8 Lee, Y., J. Young, H. J. Kwon, J. W. Suh, J. Kim, Y. Chong, and Y. Lim. 2006. AdoMet derivatives induce the production of actinorhodin in Streptomyces coelicolor. J. Microbiol. Biotechnol. 16: 965-968   과학기술학회마을
9 Bierman, N., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49   DOI   ScienceOn
10 Duran, R., A. Villarino, M. Bellinzoni, A. Wehenkel, P. Fernandez, B. Boitel, S. T. Cole, P. M. Alzari, and C. Cervenansky. 2005. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun. 333: 858-867   DOI   ScienceOn
11 Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Centre, Norwich Research Park, England
12 Zhang, C. C. 1996. Bacterial signaling involving eukaryotictype protein kinases. Mol. Microbiol. 20: 9-15   DOI   ScienceOn
13 Chong, Y., J. Young, J. Kim, Y. Lee, K. S. Park, J. H. Cho, H. J. Kwon, J. W. Suh, and Y. Lim. 2006. S-Adenosyl- L-methionine analogues to enhance the production of actinorhodin. J. Microbiol. Biotechnol. 16: 1154-1157   과학기술학회마을
14 Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deciphering the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220
15 Umeyama, T., P. C. Lee, K. Ueda, and S. Hourinochi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292   DOI
16 Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong, and J. W. Suh. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600   DOI   ScienceOn
17 Umeyama, T., P. C. Lee, and S. Hourinochi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425   DOI   ScienceOn
18 Tomono, A., M. Mashiko, T. Shimazu, H. Inoue, H. Nagasawa, M. Yoshida, Y. Ohnishi, and S. Horinouchi. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123   DOI   ScienceOn
19 Mandec, E., A. Stensballe, S. Kjellström, L. Cladière, M. Obuchowski, O. N. Jensen, and S. J. Seror. 2003. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J. Mol. Biol. 330: 459-472   DOI   ScienceOn
20 Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881   DOI
21 Zhao, X. Q., Y. Y. Jin, H. J. Kwon, Y. Y. Yang, and J. W. Suh. 2006. S-Adenosylmethionine (SAM) regulates antibiotic biosynthesis in Streptomyces spp. in a mode independent of its role as a methyl donor. J. Microbiol. Biotechnol. 16: 927-932   과학기술학회마을
22 Rajkanikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2006. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr. Microbiol. 53: 204-208   DOI   ScienceOn
23 Kenelly, P. J. 2002. Protein kinases and protein phosphatases in prokaroytes: A genome perspective. FEMS Microbiol. Lett. 206: 1-8   DOI   ScienceOn
24 Bentley, S. D., K. F. Charter, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147   DOI   ScienceOn
25 Petrickova, K. and M. Petricek. 2003. Eukaryotic-type protein kinases in Streptomyces coelicolor: Variation on a common theme. Microbiology 149: 1609-1621   DOI   ScienceOn