Optimization of Culture Medium for Lactosucrose ($^4G-{\beta}$-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis

  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Lim, Jung-Soo (Digital Applicances R&D Team, Samsung Electronics Co. Ltd.) ;
  • Song, Yoon-Seok (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Prak, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2007.12.31

Abstract

In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ($^4G-{\beta}$-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.

Keywords

References

  1. Choi, H. J., C. S. Kim, P. Kim, H. C. Jung, and D. K. Oh. 2004. Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol. Prog. 20: 1876-1879 https://doi.org/10.1021/bp049770v
  2. Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Purification and some properties of ${\beta}$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 913-919 https://doi.org/10.1271/bbb1961.54.913
  3. Fujita, K., K. Hara, H. Hashimoto, and S. Kitahata. 1990. Transfructosylation catalyzed by ${\beta}$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 2655- 2661 https://doi.org/10.1271/bbb1961.54.2655
  4. Kim, K. A., B. S. Noh, J. K. Lee, S. Y. Kim, Y. C. Park, and D. K. Oh. 2000. Optimization of culture condition for erythritol production by Torula sp. J. Microbiol. Biotechnol. 10: 69-74
  5. Kim, J. D. and C. G. Lee. 2005. Systemic optimization of microalgae for bioactive compound production. Biotechnol. Bioproc. E 10: 418-424 https://doi.org/10.1007/BF02989824
  6. Kim, J. M., C. Park, S. W. Kim, and S. Y. Kim. 2006. Flux optimization using genetic algorithms in membrane bioreactor. J. Microbiol. Biotechnol. 16: 863-869
  7. Kozo, H., M. Toshio, S. Shuzo, F. Kohki, T. Yasuhiko, and Y. Masayuki. 1991. Process for preparing lactosucrose highcontent powder and use of said powder. EP 0447125 A1
  8. Lee, J. C., K. Na, J. M. Yun, and J. K. Hwang. 2001. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc. J. Microbiol. Biotechnol. 11: 858- 862
  9. Lee, S. L. and W. C. Chen. 1997. Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme Microbial Technol. 21: 436-440 https://doi.org/10.1016/S0141-0229(97)00016-1
  10. Lim, J. S., M. C. Park, J. H. Lee, S. W. Park, and S. W. Kim. 2005. Optimization of culture medium and conditions for neo-fructooligosaccharides production by Penicillium citrinum. Eur. Food Res. Technol. 221: 639-644 https://doi.org/10.1007/s00217-005-0070-6
  11. Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, and S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neo-fructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1322
  12. Nadeau, D. 2000. The role of short-chain fructooligosaccharides in health and disease. Nutr. Clin. Care 3: 266-273 https://doi.org/10.1046/j.1523-5408.2000.00068.x
  13. Omar, R., M. A. Abdullah, M. A. Hasan, M. Marziah, and M. K. Siti Mazlina. 2005. Optimization and elucidation of interactions between ammonium nitrate and phosphate in Centella asiatica cell culture using response surface methodology. Biotechnol. Bioproc. E 10: 192-197 https://doi.org/10.1007/BF02932012
  14. Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Dexorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71
  15. Park, N. H., H. J. Choi, and D. K. Oh. 2005. Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol. Lett. 27: 495-497 https://doi.org/10.1007/s10529-005-2539-6
  16. Pilgrim, A., M. Kawase, M. Ohashi, K. Fujita, K. Murakami, and K. Hashimoto 2001. Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using ${\beta}$-fructofuranosidase from Arthrobacter sp. K-1. Biosci. Biotechnol. Biochem. 65: 758-765 https://doi.org/10.1271/bbb.65.758
  17. Rivero-Urgell, M. and A. Santamaria-Orleans. 2001. Oligosaccharides: Application in infant food. Early Hum. Dev. 65: 43-52 https://doi.org/10.1016/S0378-3782(01)00202-X
  18. Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380
  19. Sunitha, K., J. Lee, and T. Oh. 1999. Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng. 21: 477- 481
  20. Takahama, A., H. Kuze, S. Okano, T. Akiyama, H. Nakane, H. Takahashi, and T. Kobayashi. 1991. Production of lactosucrose by Bacillus natto levansucrase and some properties of the enzyme. J. Jpn. Soc. Food Sci. Technol. 38: 789-796 https://doi.org/10.3136/nskkk1962.38.789
  21. Teruel, M. L. A., E. Gontier, C. Bienaime, J. E. N. Saucedo, and J. N. Barbotin. 1997. Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microbial Technol. 21: 314-320 https://doi.org/10.1016/S0141-0229(97)00045-8
  22. Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101