O-Methylation of Flavonoids Using DnrK Based on Molecular Docking

  • Kim, Na-Yeon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jeong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Youn-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Eun-Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jin-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Chong, You-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2007.12.31

Abstract

O-Methylation is a common substitution reaction found in microbes as well as in mammalians. Some of the O-methyltransferases (OMTs) have broad substrate specificity and could be used to methylate various compounds. DnrK from Streptomyces peucetius encodes an anthracycline 4-O-methyltransferase, which uses carminomycin as a substrate, and its crystal structure has been determined. Molecular docking experiments with DnrK using various flavonoids were successfully conducted, and some of the flavonoids such as apigenin and genistein were predicted to serve as substrates. Based on these results, O-methylations of various flavonoids with the DnrK were successfully carried out. The methylation position was determined to be at the hydroxyl group of C7. Important amino acid residues for the enzymatic reaction of DnrK with apigenin could be identified using site-directed mutagenesis. Molecular docking could be useful to predict the substrate specificity ranges of other OMTs.

Keywords

References

  1. Arnold, F. H. and A. A. Volkov. 1999. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54-59 https://doi.org/10.1016/S1367-5931(99)80010-6
  2. Connors, N. C., P. L. Bartel, and W. R. Strohl. 1990. Biosynthesis of anthracyclines: Carminomycine 4-Omethyltransferase, the terminal enzymic step in the formation of daunomycine. J. Gen. Microbiol. 136: 1895-1898 https://doi.org/10.1099/00221287-136-9-1895
  3. Ferrrer, J.-L., C. Zubieta, R. A. Dixon, and J. P. Noel. 2005. Crystal structure of alfalfa caffoyl coenzyme A 3-Omethyltransferase. Plant Physiol. 137: 1009-1017 https://doi.org/10.1104/pp.104.048751
  4. Graefe, E. U., H. Derendorf, and M. Veit. 1999. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int. J. Clin. Pharmacol. Ther. 37: 219-233
  5. Ibrahim, R. K., A. Bruneau, and B. Bantignies. 1998. Plant O-methyltransferase: Molecular analysis, common signature and classification. Plant Mol. Biol. 36: 1-10 https://doi.org/10.1023/A:1005939803300
  6. Ibdah, M., X.-H. Zhang, J. Schnot, and T. Vogt. 2003. A novel $Mg^{2+}$-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 278: 43961-43972 https://doi.org/10.1074/jbc.M304932200
  7. Jansson, A., H. Koskiniemi, P. Mantsala, J. Niemi, and G. Schneider. 2004. Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J. Biol. Chem. 279: 41149-41156 https://doi.org/10.1074/jbc.M407081200
  8. Jeffery, D. R. and J. A. Roth. 1984. Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex. J. Neurochem. 42: 826-832 https://doi.org/10.1111/j.1471-4159.1984.tb02755.x
  9. Kang, S., S. Lee, C. Kwon, and S. Jung. 2006. Solubility enhancement of flavonoids by cyclosophoraose isolated from Rhizobium meliloti 2011. J. Microbiol. Biotechnol. 16: 791-794
  10. Kim, D. H., B.-G. Kim, Y. Lee, J. Y. Ryu, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2005. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotechnol. 138: 155-162
  11. Lee, H. J., B. G. Kim, and J.-H. Ahn. 2006. Molecular cloning and characterization of Bacillus cereus Omethyltransferase. J. Microbiol. Biotechnol. 16: 619-622
  12. Lee, Y. J., B.-G. Kim, Y. Park, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2006. Biotransformation of flavonoids with Omethyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096
  13. Otten, S. L., K. J. Stutzman-Engwall, and C. R. Hutchinson. 1990. Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caesius. J. Bacteriol. 172: 3427-3434 https://doi.org/10.1128/jb.172.6.3427-3434.1990
  14. Stutzman-Engwall, K. J. and C. R. Hutchinson. 1989. Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc. Natl. Acad. Sci. USA 86: 3135-3139
  15. Vidgren, J. L., A. Syeriseon, and A. Liljas. 1994. Crystal structure of catechol O-methyltransferase. Nature 368: 354- 357 https://doi.org/10.1038/368354a0
  16. Yoon, Y., Y. S. Yi, Y. Lee, S. Kim, B. G. Kim, J.-H. Ahn, and Y. Lim. 2005. Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biophys. Biochem. Acta 1730: 85-95 https://doi.org/10.1016/j.bbaexp.2005.06.005
  17. Yuan, L., I. Kureck, J. English, and R. Keenan. 2005. Laboratory-directed protein evolution. Microbiol. Molec. Biol. Rev. 69: 373-392 https://doi.org/10.1128/MMBR.69.3.373-392.2005
  18. Zhang, X., L. Zhou, and X. Cheng, 2000. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19: 3509-3519 https://doi.org/10.1093/emboj/19.14.3509
  19. Zubieta, C., X. Z. He, R. A. Dixon, and J. P. Noel. 2001. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant Omethyltransferases. Nat. Struct. Biol. 8: 271-279 https://doi.org/10.1038/85029
  20. Zubieta, C., P. Kota, J.-L. Ferrer, R. A. Dixon, and J. P. Noel. 2002. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-Omethyltransferase. Plant Cell 14: 1265-1277 https://doi.org/10.1105/tpc.001412