Dasania marina gen. nov., sp. nov., of the Order Pseudomonadales, Isolated from Arctic Marine Sediment

  • Lee, Yoo-Kyung (Polar BioCenter, Korea Polar Research Institute, KORDI) ;
  • Hong, Soon-Gyu (Polar BioCenter, Korea Polar Research Institute, KORDI) ;
  • Cho, Hyun-Hee (Polar BioCenter, Korea Polar Research Institute, KORDI) ;
  • Cho, Kyeung-Hee (Polar BioCenter, Korea Polar Research Institute, KORDI) ;
  • Lee, Hong-Kum (Polar BioCenter, Korea Polar Research Institute, KORDI)
  • Published : 2007.12.31

Abstract

An obligately aerobic bacterium, strain KOPRI $20902^T$, was isolated from a marine sediment in Ny-${\AA}$lesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was $17-22^{\circ}C$. Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required $Ca^{2+}$ or $Mg^{2+}$ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [$C_{16:1}\;{\omega}7c/15:0$ iso 2OH (45.3%), $C_{16:0}$ (18.4%), ECL 11.799 (11.2%), $C_{10:0}$ 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-${\beta}$-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI $20902^T$ (=KCTC $12566^T$=JCM $13441^T$) is the type strain of Dasania marina.

Keywords

References

  1. Bogan, B.W., W.R. Sullivan, K.J. Kayser, K.D. Derr, H.C. Aldrich, and J.R. Paterek. 2003. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int. J. Syst. Evol. Microbiol. 53, 1389-1395 https://doi.org/10.1099/ijs.0.02568-0
  2. Cho, J.C. and S.J. Giovannoni. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70, 432-440 https://doi.org/10.1128/AEM.70.1.432-440.2004
  3. Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int. J. Syst. Evol. Microbiol. 57, 2259-2261 https://doi.org/10.1099/ijs.0.64915-0
  4. Collins, M.D. 1985. Analysis of isoprenoid quinines. Methods Microbiol. 18, 329-366 https://doi.org/10.1016/S0580-9517(08)70480-X
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376 https://doi.org/10.1007/BF01734359
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416 https://doi.org/10.2307/2412116
  8. Garrity, G.M., J.A. Bell, and T. Lilburn. 2005. Order IX. Pseudomonadales Orla-Jensen 1921, $270^{AL}$. Brenner, p. 323. In D.J. Brenner, N.R. Krieg, and J.T. Staley (eds.), Bergey's manual of systematic bacteriology, 2nd ed, Vol. 2. The proteobacteria. Part B. The Gammaproteobacteria. Springer, New York, USA
  9. Humphry, D.R., G.W. Black, and S.P. Cummings. 2003. Reclassification of 'Pseudomonas fluorescens subsp. cellulosa' NCIMB 10462 (Ueda et al. 1952) as Cellvibrio japonicus sp. nov. and revival of Cellvibrio vulgaris sp. nov., nom. rev. and Cellvibrio fulvus sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 53, 393-400 https://doi.org/10.1099/ijs.0.02271-0
  10. Johnson, J.L. 1985. Dertermination of DNA base composition, p. 1-31. In G. Gottschalk (ed). Methods in Microbiology, Vol. 18. Academic Press Ltd., London, UK
  11. Juni, E. and K. Bövre. 2005. Family II. Moraxellaceae Rossau, Van Landschoot, Gillis and De Ley 1991, 317VP. Brenner, p. 411- 417. In D.J. Brenner, N.R. Krieg, and J.T. Staley (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Vol. 2 The proteobacteria. Part B. The Gammaproteobacteria. Springer, New York, USA
  12. Kimura, M. 1980. A simple mehtod for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  13. Lane, D.J. 1991. 16S/23S rRNA sequencing. p. 115-175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons. New York, USA
  14. Lee, Y.K., H.J. Jung, and H.K. Lee. 2006. Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J. Microbiol. 44, 694-698
  15. Mandel, M., L. Lgambi, J. Bergendahl, M.L. Dodson, and E. Scheltgen. 1970. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol. 101, 333-338 https://doi.org/10.1002/path.1711010406
  16. Marmur, J. and P. Doty. 1962. Dertermination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109-118 https://doi.org/10.1016/S0022-2836(62)80066-7
  17. Mergaert J., D. Lednicka, J. Goris, M.C. Cnockaert, P. De Vos, and J. Swings. 2003. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int. J. Syst. Evol. Microbiol. 53, 465-471 https://doi.org/10.1099/ijs.0.02316-0
  18. Minnikin, D.E., A.G. O'Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233-241 https://doi.org/10.1016/0167-7012(84)90018-6
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  20. Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA
  21. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgin. 1997. The CLUSTAL X window interface: Flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res. 24, 4876-4882