• Title/Summary/Keyword: Cellvibrio

Search Result 12, Processing Time 0.026 seconds

Purification and Characterization of ${\alpha}$-Neoagarooligosaccharide Hydrolase from Cellvibrio sp. OA-2007

  • Ariga, Osamu;Okamoto, Naoki;Harimoto, Naomi;Nakasaki, Kiyohiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.48-51
    • /
    • 2014
  • ${\alpha}$-Neoagarooligosaccharide (${\alpha}$-NAOS) hydrolase was purified from Cellvibrio sp. OA-2007 by using chromatographic techniques after hydroxyapatite adsorption. The molecular masses of ${\alpha}$-NAOS hydrolase estimated using SDS-PAGE and gel filtration chromatography were 40 and 93 kDa, respectively, and the optimal temperature and pH for the enzyme activity were $32^{\circ}C$ and 7.0-7.2. ${\alpha}$-NAOS hydrolase lost 43% of its original activity when incubated at $35^{\circ}C$ for 30 min. The enzyme hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose to galactose, agarotriose, and agaropentaose, respectively, and produced 3,6-anhydro-L-galactose concomitantly; however, it did not degrade agarose.

Isolation of a Novel Freshwater Agarolytic Cellvibrio sp. KY-YJ-3 and Characterization of Its Extracellular ${\beta}$-Agarase

  • Rhee, Young-Joon;Han, Cho-Rong;Kim, Won-Chan;Jun, Do-Youn;Rhee, In-Ku;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1378-1385
    • /
    • 2010
  • A novel agarolytic bacterium, KY-YJ-3, producing extracellular agarase, was isolated from the freshwater sediment of the Sincheon River in Daegu, Korea. On the basis of Gram-staining data, morphology, and phylogenetic analysis of the 16S rDNA sequence, the isolate was identified as Cellvibrio sp. By ammonium sulfate precipitation followed by Toyopearl QAE-550C, Toyopearl HW-55F, and MonoQ column chromatographies, the extracellular agarase in the culture fluid could be purified 120.2-fold with a yield of 8.1%. The specific activity of the purified agarase was 84.2 U/mg. The molecular mass of the purified agarase was 70 kDa as determined by dodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified agarase were $35^{\circ}C$ and pH 7.0, respectively. The purified agarase failed to hydrolyze the other polysaccharide substrates, including carboxymethyl-cellulose, dextran, soluble starch, pectin, and polygalacturonic acid. Kinetic analysis of the agarose hydrolysis catalyzed by the purified agarase using thin-layer chromatography showed that the main products were neoagarobiose, neoagarotetraose, and neoagarohexaose. These results demonstrated that the newly isolated freshwater agarolytic bacterium KY-YJ-3 was a Cellvibrio sp., and could produce an extracellular ${\beta}$-agarase, which hydrolyzed agarose to yield neoagarobiose, neoagarotetraose, and neoagarohexaose as the main products.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.

Isolation of an Agarolytic Bacteria, Cellvibrio mixtus SC-22 and The Enzymatic Properties (한천분해세균 Cellvibrio mixtus SC-22의 분리 및 효소적 특성)

  • Cha, Jeong-Ah;Kim, Yoo-Jin;Seo, Yung-Bum;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.157-162
    • /
    • 2009
  • An agar-liquefying bacteria (SC-22), which produces a diffusible agarase that caused agar softening around the colony was isolated from Daecheong lake in Korea. Chemotaxanomic and phylogenetic analyses based on 16S rRNA gene sequences revealed the strain was classified as Cellvibrio mixtus SC-22. The isolate SC-22 showed maximal extracellular agarase activity with 58.5 U/mL after 48 h cultivation in the presence of 0.2% agar. It was observed that the isolate produced two kinds of extracellular and three kinds of intracellular isoenzymes. The major agarase was purified from the culture filtrate of agarolytic bacteria by ammonium sulfate precipitation, anion exchange and gel filtration column chromatographic methods. The molecular mass of the purified enzyme was estimated to be 25 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 7.0 and $50^{\circ}C$, respectively. The agarase activity was activated by $Fe^{2+}$, $Na^+$ and $Ca^{2+}$ ions while it was inhibited by $Hg^{2+}$, $Mn^{2+}$ and $Cu^{2+}$ at 1 mM concentration. The predominant hydrolysis product of agarose by the enzyme was galactose and disaccharide on TLC, indicating the cleavage of $\beta$-1,4 linkage in a random manner. The enzyme showed high substrate specificity for only agar and agarose among various polysaccharides.

Dasania marina gen. nov., sp. nov., of the Order Pseudomonadales, Isolated from Arctic Marine Sediment

  • Lee, Yoo-Kyung;Hong, Soon-Gyu;Cho, Hyun-Hee;Cho, Kyeung-Hee;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.505-509
    • /
    • 2007
  • An obligately aerobic bacterium, strain KOPRI $20902^T$, was isolated from a marine sediment in Ny-${\AA}$lesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was $17-22^{\circ}C$. Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required $Ca^{2+}$ or $Mg^{2+}$ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [$C_{16:1}\;{\omega}7c/15:0$ iso 2OH (45.3%), $C_{16:0}$ (18.4%), ECL 11.799 (11.2%), $C_{10:0}$ 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-${\beta}$-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI $20902^T$ (=KCTC $12566^T$=JCM $13441^T$) is the type strain of Dasania marina.

Cloning of Agarase Gene from Non-Marine Agarolytic Bacterium Cellvibrio sp.

  • Ariga, Osamu;Inoue, Takayoshi;Kubo, Hajime;Minami, Kimi;Nakamura, Mitsuteru;Iwai, Michi;Moriyama, Hironori;Yanagisawa, Mitsunori;Nakasaki, Kiyohiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1237-1244
    • /
    • 2012
  • Agarase genes of non-marine agarolytic bacterium Cellvibrio sp. were cloned into Escherichia coli and one of the genes obtained using HindIII was sequenced. From nucleotide and putative amino acid sequences (713 aa, molecular mass; 78,771 Da) of the gene, designated as agarase AgaA, the gene was found to have closest homology to the Saccharophagus degradans (formerly, Microbulbifer degradans) 2-40 aga86 gene, belonging to glycoside hydrolase family 86 (GH86). The putative protein appears to be a non-secreted protein because of the absence of a signal sequence. The recombinant protein was purified with anion exchange and gel filtration columns after ammonium sulfate precipitation and the molecular mass (79 kDa) determined by SDS-PAGE and subsequent enzymography agreed with the estimated value, suggesting that the enzyme is monomeric. The optimal pH and temperature for enzymatic hydrolysis of agarose were 6.5 and $42.5^{\circ}C$, and the enzyme was stable under $40^{\circ}C$. LC-MS and NMR analyses revealed production of a neoagarobiose and a neoagarotetraose with a small amount of a neoagarohexaose during hydrolysis of agarose, indicating that the enzyme is a ${\beta}$-agarase.

Improvement of Insoluble $\beta$-Glucosidase Activity by Molecular Chaperonin GroEL/ES (Inclusion Body를 형성한 $\beta$-Glucosidase의 Chaperonin에 의한 활성 향상)

  • Kim, Jong-Deok;Sachiko Machida;Kiyoshi Hayashi;Ha, Sun-Deok;Gong, Jae-Yeol
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.429-433
    • /
    • 1999
  • $\beta$-Glucosidaes from Cellvibrio gilvus(CG) was successfully overproduced in soluble form in E. coli with the coexpression of GroEL/ES/. Without the GroEL/ES protein, the $\beta$-glucosidase overexpressed in E. coli constituted a huge amount(80%) of total cellular protein, but was localized in the insoluble fraction, and little activity was detected in the soluble fraction. Coexpression of the E. coli GroEL/ES had a drastic impact on the proper folding of the $\beta$-glucosidase; 20% of the overexpressed enzyme was recovered in the soluble fraction in active form. Similar effects of GroEL/ES were also observed on the overexpressed $\beta$-glucosidase from Agrobacterium tumefaciens(AT). And pET28(a)-RGRAR, partially deleted mutant lacking 5-amino acid residues at carboxy teminus also could be folded into an active form when expressed with the molecular chaperonin GroEL/ES, and its activity was higher than that of the without GroEL/ES system, In addition, the synergistic effect of GroEL/ES and the low induction temperature were important factors for solubilization of the inclusion body from overproduced $\beta$-glucosidases.

  • PDF

Phosphorolytic Pathway in Cellulose Degradation

  • Kitaoka, Motomitsu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.179-182
    • /
    • 2001
  • Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several $\beta$-l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP

  • PDF

A report on 17 unrecorded bacterial species in Korea isolated from Lakes Soyang and Chungju in 2016

  • Jeon, Hyoung Tae;Joung, Yochan;Kim, Suhyun;Lim, Yeonjung;Cho, Jang-Cheon
    • Journal of Species Research
    • /
    • v.6 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • As a part of the research program 'Survey of freshwater organisms and specimen collection', freshwater samples were collected from Lakes Soyang and Chungju in 2016. Hundreds of bacterial strains were isolated from the samples and were identified based on 16S rRNA gene sequences. Among the bacterial isolates, strains showing higher than 98.7% sequence similarity with validly published bacterial species not reported in Korea were selected as unrecorded bacterial species. Based on 16S rRNA gene sequence similarity, 17 strains were identified as unrecorded bacterial species in Korea. The 17 bacterial strains were phylogenetically diverse and belonged to four phyla, seven classes, 13 orders, 14 families, and 16 genera. At generic level, the unreported species were affiliated with Caulobacter, Paracoccus, and Mesorhizobium of the class Alphaproteobacteria, Deefgea, Undibacterium, Chitinimonas, Inhella, and Sphaerotilus of the class Betaproteobacteria, Vibrio and Cellvibrio of the class Gammaproteobacteria, Sanguibacter and Clavibacter of the phylum Actinobacteria, Lactococcus of the phylum Firmicutes, Deinococcus of the class Deinococci, and Chryseobacterium and Flavobacterium of the phylum Bacteroidetes. The unreported species were further characterized by examining Gram reaction, colony and cell morphology, biochemical properties, and phylogenetic position. The detailed description of the 17 unreported species are also provided.

A report on 14 unrecorded bacterial species isolated from the Nakdong River, South Korea

  • Cho, Ja Young;Baek, Kiwoon;Kim, Eui-Jin;Han, Ji-Hye;Hwang, Seoni;Choi, Ahyoung
    • Journal of Species Research
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • As a part of the research project "Survey of freshwater organisms and specimen collection," freshwater samples were collected from the Nakdong River. Among the bacterial isolates, we selected strains that showed higher than 98.7% 16S rRNA gene sequence similarity with confirmed bacterial species previously unreported in South Korea. The 14 new records to South Korea were phylogenetically diverse and belonged to four phyla, six classes, 11 orders, and 14 genera. At the genus level, these species were found to be affiliated with Reyranella, Ferrovibrio, Brevundimonas, and Aquidulcibacter of the class Alphaproteobacteria; Pseudomonas, Cellvibrio, and Photobacterium of the class Gammaproteobacteria; Paenibacillus and Bacillus of the phylum Firmicutes; Chryseobacterium, Flavobacterium, Pedobacter of the phylum Bacteroidetes; and Actinomadura and Leifsonia of the phylum Actinobacteria. These species were further characterized by examining their Gram reaction, colony and cell morphologies, biochemical properties, and phylogenetic positions. The detailed descriptions of these 14 previously unreported species are provided.