DOI QR코드

DOI QR Code

SPECTROSCOPY OF BRIGHT EXTRAGALACTIC PLANETARY NEBULAE

  • Published : 2007.12.31

Abstract

The spectroscopic properties of bright extragalactic planetary nebulae are reviewed, considering primarily their chemical abundances and their internal kinematics. Low-resolution spectroscopy is used to investigate how the precursor stars of bright planetary nebulae modify their original composition through nucleosynthesis and dredge up. At present, the evidence indicates that oxygen and neon abundances usually remain unchanged, helium abundances are typically enhanced by less than 50%, while nitrogen enhancements span a very wide range. Interpreting these changes in terms of the masses of their progenitor stars implies that the progenitor stars typically have masses or order $1.5M_{\bigodot}$ or less, though no models satisfactorily explain the nitrogen enrichment. High-resolution spectroscopy is used to study the internal kinematics of bright planetary nebulae in Local Group galaxies. At first sight, the expansion velocities are remarkably uniform, with a typical expansion velocity of 18 km/s and a range of 8-28 km/s, independent of the progenitor stellar population. Upon closer examination, bright planetary nebulae in the bulge of M31 expand slightly faster than their counterparts in M31's disk, a result that may extend generally to the planetary nebulae arising from old and young stellar populations. There are no very strong correlations between expansion velocity and global nebular properties, except that there are no large expansion velocities at the highest $H{\beta}$ luminosities (i.e., the youngest objects never expand rapidly). These results independently suggest that bright planetary nebulae arise from a similar mass range in all galaxies. Nonetheless, there are good reasons to believe that bright planetary nebulae do not arise from identical progenitor stars in all galaxies.

Keywords

References

  1. Arnaboldi, M., Gerhard, O., Aguerri, J. A. L., Freeman, K. C., Napolitano, N. R., Okamura, S., & Yasuda, N. 2004, Statistical significance of small-scale anisotropy in arrival directions of ultra-high-energy cosmic rays, ApJ, 614, L33 https://doi.org/10.1086/425417
  2. Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D. 1989, Planetary nebulae as standard candles. II - The calibration in M31 and its companions, ApJ, 339, 53
  3. Ciardullo, R., Feldmeier, J. J., Jacoby, G. H., Kuzio de Naray, R., Laychak, M. B., & Durrell, P. R. 2002, Planetary nebulae as standard candles. XII. Connecting the population I and population II distance scales, ApJ, 577, 31 https://doi.org/10.1086/342180
  4. Clayton, D. 2003, Handbook of Isotopes in the Cosmos, Hydrogen to Gallium (Cambridge: Cambridge Univ. Press)
  5. Dopita, M. A., Jacoby, G. H., & Vassiliadis, E. 1992, A theoretical calibration of the planetary nebular cosmic distance scale, ApJ, 389, 27 https://doi.org/10.1086/171186
  6. Feldmeier, J. J. 2006, lntracluster planetary nebulae, in Planetary nebulae in our Galaxy and beyond, lAU Symp. 234, (eds.) M. J. Barlow, & R. H. Mendez (Cambridge: Cambridge Univ. Press), p.33
  7. Gerhard, O., Arnaboldi, M., Freeman, K. C., Okamura, S., Kashikawa, N., & Yasuda, N. 2007, The kinematics of intracluster planetary nebulae and the ongoing subcluster merger in the Coma cluster core, A&A, 468, 815 https://doi.org/10.1051/0004-6361:20066484
  8. Jacoby, G. H. 1989, Planetary nebulae as standard candles. I - Evolutionary models, ApJ, 339, 39
  9. Karakas, A., & Lattanzio, J. C. 2007, astroph/0708.4385
  10. Lopez, M. G., Richer, M. G., Riesgo, H., Steffen, W., Garca-Segura, G., Meaburn, J., & Bryce, M. 2006, The SPM kinematic catalogue of planetary nebulae, in Planetary nebulae in our Galaxy and beyond, lAU Symp. 234, (eds.) M. J. Barlow, & R. H. Mendez (Cambridge: Cambridge Univ. Press), p.21
  11. Marigo, P. 2001, Chemical yields from low- and intermediate-mass stars: Model predictions and basic observational constraints, A&A, 370, 194
  12. Marigo, P., Girardi, L., Weiss, A., Groenewegen, M. A. T., & Chiosi, C. 2004, Evolution of planetary nebulae. II. Population effects on the bright cut-off of the PNLF, A&A, 423, 995 https://doi.org/10.1051/0004-6361:20040234
  13. Mendez, R. H., Thomas, D., Saglia, R. P., Maraston, C., Kudritski, R. P., & Bender, R. 2005, Oxygen and neon abundances of planetary nebulae in the elliptical galaxy NGC 4697, ApJ, 627, 767 https://doi.org/10.1086/430498
  14. Perinotto, M., Schonberner, D., Steffen, M., & Calonaci, C. 2004, The evolution of planetary nebulae. I. A radiation-hydrodynamics parameter study, A&A, 414, 993 https://doi.org/10.1051/0004-6361:20031653
  15. Richer, M. G. 2006, The spectroscopic properties of bright extragalactic planetary nebulae, in Planetary nebulae in our Galaxy and beyond, lAU Symp. 234, (eds.) M. J. Barlow, & R. H. Mendez (Cambridge: Cambridge Univ. Press), p.317
  16. Richer, M. G., & McCall, M. L. 1995, Oxygen abundances in diffuse ellipticals and the metallicityluminosity relations for dwarf galaxies, ApJ, 445, 642 https://doi.org/10.1086/175727
  17. Richer, M. G., & McCall, M. L. 2006, The progenitors of planetary nebulae in dwarf irregular galaxies, ApJ, 658, 328 https://doi.org/10.1086/511410
  18. Richer, M. G., & McCall, M. L. 2008, in preparation
  19. Richer, M. G., McCall, M. L., & Arimoto, N. 1997, Theoretical models of the planetary nebula populations in galaxies: The ISM oxygen abundance when star formation stops, A&AS, 122, 215 https://doi.org/10.1051/aas:1997131
  20. Richer, M. G., Stasinska, G., & McCall, M. L. 1999, Planetary nebulae in M 32 and the bulge of M 31: Line intensities and oxygen abundances, A&AS, 135, 203 https://doi.org/10.1051/aas:1999172
  21. Romanowsky, A. J. 2006, Planetary nebulae as mass tracers in galaxies, in Planetary nebulae in our Galaxy and beyond, lAU Symp. 234, (eds.) M. J. Barlow, & R. H. Mendez (Cambridge: Cambridge Univ. Press), p.341
  22. Schonberner, D., Jacob, R., Steffen, M., & Sandin, C. 2007, The evolution of planetary nebulae. IV. On the physics of the luminosity function, A&A, 473, 467 https://doi.org/10.1051/0004-6361:20077437
  23. Stanghellini, L., & Renzini, A. 2000, Synthetic postasymptotic giant branch evolution: Basic models and applications to disk populations, ApJ, 542, 308 https://doi.org/10.1086/309509
  24. Stasiriska, G., Richer, M. G., & McCall, M. L. 1998, The planetary nebulae populations in five galaxies: abundance patterns and evolution, A&A, 336, 667
  25. Theuns, T., & Warren, S. J. 1997, Intergalactic stars in the Fornax cluster, MNRAS, 284, L11 https://doi.org/10.1093/mnras/284.3.L11
  26. Villaver, E., Manchado, A., & Garcia-Segura, G. 2002, The dynamical evolution of the circumstellar gas around low- and intermediate-mass stars. II. The planetary nebula formation, ApJ, 581, 1204