References
- Alkalay, D., Wagner, W. E., Carlsen, S., Khemani, L., Yolk, J., Bartlett, M. F. and LeSher, A. (1980). Bioavailability and kinetics of maprotiline. Clinical Pharmacology and Therapeutics, 27, 697-703 https://doi.org/10.1038/clpt.1980.99
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207 https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics 4 (J. M. Bernardo, et al., eds), 35-60, Oxford University Press, Oxford
- Berger, R. L. and Hsu, J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence sets. Statistical Science, 11, 283-315 https://doi.org/10.1214/ss/1032280304
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of the Royal Statistical Society, Ser. B, 41, 113-147
- Chow, S. C. and Liu, J. P. (2000). Design and Analysis of Bioavailability and Bioequivalence Studies, 2nd ed., Marcel Dekker, New York
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society, Ser. B, 49, 1-39
- Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian !inference. Biometrika, 82, 37-45 https://doi.org/10.1093/biomet/82.1.37
- Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant parameter in group models. Test, 4, 95-114 https://doi.org/10.1007/BF02563105
- Datta, G. S. and Ghosh, M. (1995c). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363 https://doi.org/10.2307/2291526
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159 https://doi.org/10.1214/aos/1033066203
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative Ppriors (with discussion). In Bayesian Statistics 4 (J. M. Bernardo, et al., eds.) 195-210, Oxford University Press, Oxford
- Moon, K. A. and Kim, D. H. (2001). Bayesian testing for the equality of two lognormal populations with the fractional Bayes factor. Journal of the Korean Data & Information Science Society, 12, 51-59
- Moon, K. A., Shin, I. H. and Kim, D. H. (2000). Bayesian testing for the equality of two lognormal populations. Journal of the Korean Data & Information Science Society, 11, 269-277
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics. Biometrika, 80, 499-505 https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975 https://doi.org/10.1093/biomet/84.4.970
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, 16, 485-514
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608 https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formula for confidence points based on integrals of weighted likelihood. Journal of the Royal Statistical Society, Ser, B, 25, 318-329