설계변수별 연속철근 콘크리트 포장의 피로수명 연구

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter

  • 박종섭 (상명대학교 토목환경공학부) ;
  • 강영종 (고려대학교 건축.사회환경공학과)
  • 발행 : 2007.12.31

초록

초기 설계조건이 반영된 연속철근 콘크리트 포장의 피로수명을 규명하고자 시험체를 제작하여 피로시험을 실시하였다. 유한요소해석 결과분석과 사용되는 재료의 특성을 고려하여 축소된 8개의 시험체를 제작하였다. 피로시험에 앞서서 정적파괴하중 결정과 균열발생 및 진전 상황을 추정하고자 정적하중재하 시험이 실시되었다. 피로시험 결과로부터 초기발생균열의 간격이 증가할수록 피로수명이 증가하는 것을 확인할 수 있었으며, 콘크리트 슬래브 표면 가까이에 철근을 배근한 시험체가 슬래브 중앙에 철근을 배근한 시험체 보다 우수한 피로수명을 나타내었다. 또한, 지반조건의 변화가 균열발생 및 피로수명에 큰 영향을 미치는 것을 확인할 수 있었다. 본 연구의 결과는 국내 고속도로에 건설된 연속철근 콘크리트 포장의 유지보수에 적극 활용될 수 있을 것이다.

A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

키워드

참고문헌

  1. 건설부 (1988) 중부고속도록 건설지. 한국도로공사
  2. AASHTO (1993) guide for design of pavement structures. American Association of State Highway and Transportation Officials, Washington, D.C. USA
  3. Algor (1989) Algor processor reference manual. Algor Inc., Pittsburgh, PA
  4. Jung, H.K, Lee, B.C., Lim, S.Y., and Kim, KH. (1994) A study on development of cracks and behavior in continuously reinforced concrete pavement, Annual Research Report. Korea Highway Research Center, Korea Highway Corporation
  5. Kang, YJ., Park, J.S., Yoon. KY. and Han S.Y (2004) Experimental study on fatigue strength of continuously reinforced concrete pavements. Magazine of concrete research, Thomas Telford, Vol. 56, No. 10, December, pp. 605-615 https://doi.org/10.1680/macr.56.10.605.53683
  6. Majidzadeh, K, and Ilves, G. J. (1983) Evaluation of rigid pavement overlay design procedure: development of the OAR procedure. FHWA-RD-83-090, Federal Highway Administration
  7. Suh, Y-C, Hankins, K D. and McCullough, B. F. (1992) Early-age behavior of continuously reinforced concrete pavement and calibration of the failure prediction model in the CRCP-7 program. Research Report 1244-3, Center for Transportation Research, University of Texas at Austin, TX. USA
  8. Taute, A., McCullough, B. F. and Hudson, W. R. (1981) Improvements to the materials characterization and fatigue lite prediction methods of the Texas rigid pavement overlay design procedure. Research Report 249-1, Center for Transportation Research, University of Texas at Austin, TX. USA.
  9. Vesic, A. S., and Saxena, S. K (1970) Analysis of structural behavior of AASHO road test rigid pavements. NCHRP Report 97, HRB, National Research Council, Washington, D.C. USA
  10. Yoder, E.J. and Witczak, M.W. (1975) Principle of pavement design., John Wiley & Sons Inc., New York