DOI QR코드

DOI QR Code

The Measurement System and Physical Property of Unconsolidated Sample under Trinxial Pressure

삼축압력하에서의 미고결 시료의 물성측정을 위한 측정 장치와 물성 연구

  • Bae, Wi-Sup (Department of Earth Environmental Sciences, Sejong University) ;
  • Chung, Tae-Moon (Department of Earth Environmental Sciences, Sejong University) ;
  • Kwon, Young-Ihn (Petroleum and Marine Resources Division, Korea institute of Geoscience and Mineral Resources) ;
  • Kim, Hyun-Tae (Petroleum and Marine Resources Division, Korea institute of Geoscience and Mineral Resources)
  • Published : 2007.12.31

Abstract

A measurement system of tri-axial pressure was designed and constructed to measure permeability and resistivity under changing confining pressure. The system was designed to measure the permeability and resistivity of a core simultaneously, consisting of tri-axial supporting device and sets of dual-flow measurement. In this measurement system the permeability and resistivity of a sample can be directly measured and porosity can be obtained using Archie's laws. As for physical properties, artificial core samples are made from mixtures of standard commercial sand and mud of illite. In-situ sediment cores were sampled at the water-depth of 1,800m in the Ulleung Basin East Sea. In order to investigate the effects of confining pressure changes on physical properties, permeability and resistivity changes were monitored with increasing confining pressure. In this study, it was found that with the increase of confining pressure, permeability and porosity tend to decrease and resistivity tend to increase exponentially.

미고결, 난투수층 퇴적층 시료의 투수계수와 전기비저항의 측정이 가능한 삼축압력 측정장치를 설계하고 제작하였다. 이 측정장치는 측정셀 전후에 입출력 유량측정시스템이 설치되어 시료의 봉압을 증가시키면서 투수계수와 전기비저항을 동시에 측정할 수 있다. 아치의 법칙과 실험전후의 시료 질량 변화와 부피를 이용하여 공극률을 측정할 수 있다. 실험을 위한 시료는 표준모래와 일라이트 진흙을 성분비율을 다양하게 혼합한 인공시료와 동해 울릉분지에서 채취한 현장시료를 사용하였다. 이들 시료들에 대한 투수계수, 전기비저항을 봉압이 증가함에 따라 측정하고 분석하였다. 봉합이 증가함에 따라서 투수계수와 공극률은 지수적으로 감소하고 전기비저항은 지수적으로 증가한다.

Keywords

References

  1. 박삼규, 2004, 지반의 전기비저항을 좌우하는 물성요인. 한국물리탐사학회지, 7(2), 130-135
  2. Archie, G.E., 1942, The electrical resistivity log as an aid in determining some Reservoir characteristics. American Institute of Mining, Metallugical and Petroleum Engineers, 146, 54-67
  3. Archie, G.E., 1947, Electrical resistivity and aid in core analysis interpretation. American Association of Petroleum Geologists, 31 (2), 350-366
  4. Abu-Hassanein, Z., Benson, C.H., and Blotz, L.R., 1996, Electrical resistivity of compacted clays. Journal of Geotechnical Engineering, 122 (5), 397-406 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  5. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine Geology of Korean Seas. Elsevier, Amsterdam, Netherlands, 313 p
  6. Patnode, H.W. and Wyllie, M.R., 1950, The presence of conductive solids in reservoir rocks as a factor in electric log interpretation. American Institute of Mining, Metallugical and Petroleum Engineers, 189, 47-52
  7. Rust, C.F., 1952, Electrical resistivity measurements on reservoir rock samples by the two-electrode and four-electrode methods. American Institute of Mining, Metallugical and Petroleum Engineers, Pet. Branch, 195, 217-224
  8. Sigal, R.F., 2002, The pressure dependence of permeability. Petrophysics, 43 (2), 92-102