• Title/Summary/Keyword: tri-axial measurement system

Search Result 5, Processing Time 0.024 seconds

The Measurement System and Physical Property of Unconsolidated Sample under Trinxial Pressure (삼축압력하에서의 미고결 시료의 물성측정을 위한 측정 장치와 물성 연구)

  • Bae, Wi-Sup;Chung, Tae-Moon;Kwon, Young-Ihn;Kim, Hyun-Tae
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.838-846
    • /
    • 2007
  • A measurement system of tri-axial pressure was designed and constructed to measure permeability and resistivity under changing confining pressure. The system was designed to measure the permeability and resistivity of a core simultaneously, consisting of tri-axial supporting device and sets of dual-flow measurement. In this measurement system the permeability and resistivity of a sample can be directly measured and porosity can be obtained using Archie's laws. As for physical properties, artificial core samples are made from mixtures of standard commercial sand and mud of illite. In-situ sediment cores were sampled at the water-depth of 1,800m in the Ulleung Basin East Sea. In order to investigate the effects of confining pressure changes on physical properties, permeability and resistivity changes were monitored with increasing confining pressure. In this study, it was found that with the increase of confining pressure, permeability and porosity tend to decrease and resistivity tend to increase exponentially.

Effect of Visual and Somatosensory Information Inputs on Postural Sway in Patients With Stroke Using Tri-Axial Accelerometer Measurement

  • Chung, Jae-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2016
  • Background: Posture balance control is the ability to maintain the body's center of gravity in the minimal postural sway state on a supportive surface. This ability is obtained through a complicated process of sensing the movements of the human body through sensory organs and then integrating the information into the central nervous system and reacting to the musculoskeletal system and the support action of the musculoskeletal system. Motor function, including coordination, motor, and vision, vestibular sense, and sensory function, including proprioception, should act in an integrated way. However, more than half of stroke patients have motor, sensory, cognitive, and emotional disorders for a long time. Motor and sensory disorders cause the greatest difficulty in postural control among stroke patients. Objects: The purpose of this study is to determine the effect of visual and somatosensory information on postural sway in stroke patients and carrying out a kinematic analysis using a tri-axial accelerometer and a quantitative assessment. Methods: Thirty-four subjects posed four stance condition was accepted various sensory information for counterbalance. This experiment referred to the computerized dynamic posturography assessments and was redesigned four condition blocking visual and somatosensory information. To measure the postural sway of the subjects' trunk, a wireless tri-axial accelerometer was used by signal vector magnitude value. Ony-way measure analysis of variance was performed among four condition. Results: There were significant differences when somatosensory information input blocked (p<.05). Conclusion: The sensory significantly affecting the balance ability of stroke patients is somatosensory, and the amount of actual movement of the trunk could be objectively compared and analyzed through quantitative figures using a tri-axial accelerometer for balance ability.

Plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection ($CO_2$ 주입 암석물성 측정 장치 구축 방안)

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Bang, Eun-Seok;Keehm, Young-Seuk;Synn, Joong-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.303-306
    • /
    • 2007
  • After Kyoto protocol took effect, many countries are making efforts to reduce $CO_2$ one of effective which is geosequestration. But a percentage of geosequestration in total research budget is very small and the priority order of research also is receded in Korea. As one of efforts to activate the research on geosequestration in field of geophysics, we proposed the plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection which will function as original technology. The system consists of two part, one of which is a data acquisition system based on seismic and complex resistivity tomographic measurement and the other of which is a tri-axial compressive system to realize the in-situ condition. And also developments of various inversion algorithms are proposed to interpret data qualitatively such as a inversion algorithm for confined cylindrical boundary, a joint inversion algorithm and a 4-D inversion algorithm.

  • PDF

Monitoring a steel building using GPS sensors

  • Casciati, Fabio;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.349-363
    • /
    • 2011
  • To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors' laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

Application of the tri-axial drill-bit VSP method to drilling for geological survey in civil engineering

  • Soma Nobukazu;Utagawa Manabu;Seto Masahiro;Asanuma Hiroshi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.70-79
    • /
    • 2004
  • We have examined the applicability of the triaxial drill-bit VSP method (TAD-VSP) to the geological survey of possible sites for a high-level radioactive waste disposal repository. The seismic energy generated by a drill bit is measured by a downhole multi-component detector, and the resulting signals are processed to image the geological structure deep underground. In order to apply the TAD-VSP method to civil-engineering-scale drilling, we have developed a small but highly sensitive and precise three-component downhole seismic measurement system, and recorded drill-bit signals at a granite quarry. We have successfully imaged discontinuities in the granite, possibly related to fractures, as highly reflective zones. The discontinuities imaged by the TAD-VSP method correlate well with the results of other borehole observations. In conclusion, the TAD-VSP method is usable in geological investigations for civil engineering because the equipment is compact and it is simple to acquire the drill-bit signal.