DOI QR코드

DOI QR Code

Inhibition effect of neuronal death by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 신경세포사 저해 효과

  • 김완식 (동국대학교 한의과대학 내과학교실) ;
  • 정승현 (동국대학교 한의과대학 내과학교실) ;
  • 신길조 (동국대학교 한의과대학 내과학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 이원철 (동국대학교 한의과대학 내과학교실)
  • Published : 2007.01.29

Abstract

Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of retinoic acid receptor a (RARa). Rat cerebrocortical cells were grown in neurobasal medium. On DIV12 cells were treated with SB $(20{\mu}g/ml)$ and given a hypoxic shock $(2%\;O_2/5%\;CO_2,\;3hr)$ on DIV14. In situ hybridization using cRNA probe revealed that RARa mRNA punctae are distributed, in addition to nucleus, throughout neuronal dendrites, where SB upregulated its density by 69.8% (p=0.001) and 129.8% (p=0.001) in both normoxia and hypoxia, respectively. At the protein level, SB upregulated RARa in the neuronal soma by 78.8% (p=0.004) and 23.6% (p=0.001) in both normoxia and hypoxia, respectively. These results indicate that SB upregulates RARa in both normoxia and hypoxia, which might contribute to the neuroprotection.

Keywords

References

  1. Altucci L., A. Rossin, W. Raffelsberger, A. Reitmair, C. Chomienne and H. Gronemeyer. 2001. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL, Nature Medicine 7, 680-686 https://doi.org/10.1038/89050
  2. Bickler, P. E., P.H. Donohoe. 2002. Adaptive responses of vertebrate neurons to hypoxia. J. Exp Biol. 205, 3579-3586
  3. Bissonnette, R. P., T. Brunner, S. B. Lazarchik. N. J. Yoo, M. F. Boehm, D. R. Green and R. A. Heyman. 1995. 9-cis retinoic acid inhibition of activation-induced apoptosis is mediated via regulation of fas ligand and requires retinoic acid receptor and retinoid X receptor activation. Mol. Cell. Biol. 15, 5576-5585 https://doi.org/10.1128/MCB.15.10.5576
  4. Brewer, G. J., J. R. Torricelli, E. K. Evege and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576 https://doi.org/10.1002/jnr.490350513
  5. Chambon, P. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940-954 https://doi.org/10.1096/fasebj.10.9.8801176
  6. Cheng Q., H. H. Lee, Y. Li, T. P. Parks and G. Cheng. 2000. Upregulation of Bcl-x and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-kappaB inhibition, Oncogene 19, 4936-4940 https://doi.org/10.1038/sj.onc.1203861
  7. Clarke N., A. M. Jimenez-Lara, E. Voltz and H. Gronemeyer. 2004. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL, EMBO J. 23, 3051-3060 https://doi.org/10.1038/sj.emboj.7600302
  8. Ebert, B. L., J. D. Firth and P. J. Ratcliffe. 1995. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J. Biol. Chem. 270, 29083-29089 https://doi.org/10.1074/jbc.270.49.29083
  9. Erecinska, M. and I. A. Silver. 2001. Tissue oxygenation and brain sensitivity to hypoxia. Resp Physiol. 128, 263-276 https://doi.org/10.1016/S0034-5687(01)00306-1
  10. Goldberg, M. A, S. P. Dunning and H. F. Bunn, 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 242, 1412-1415 https://doi.org/10.1126/science.2849206
  11. Haddad, J. J. and S. C. Land. 2000. $O_2$-evoked regulation of HIF-1a and $NF_{\kappa}B$ in perinatal lung epithelium requires glutathione biosynthesis. Am. J. Physiol, Lung Cell Mol. Physiol. 278, L492-L503
  12. Hansen, A. 1985. Extracellular potassium concentration in juvenile and adult brain cortex during anoxia. Acta Physiol. Scand. 99, 412-428 https://doi.org/10.1111/j.1748-1716.1977.tb10394.x
  13. Hochachka, P. W. and P. Lutz. 2001. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol. B. 130, 435-459 https://doi.org/10.1016/S1096-4959(01)00408-0
  14. Huang, F. J., C. C. Shen, S. Y. Chang, T. C. Wu and Y. D. Hsuuw. 2003. Retinoic acid decreases the viability of mouse blastocysts in vitro. Hum. Reprod. 18, 130-136 https://doi.org/10.1093/humrep/deg018
  15. Huang, F. J., Y. C. Hsu, H. Y. Kang, S. Y. Chang, Y. D. Hsuuw and K. E. Huang. 2005. Effects of retinoic acid on the inner cell mass in mouse blastocysts. Fertil Steril, 83, 238-242 https://doi.org/10.1016/j.fertnstert.2004.07.955
  16. Kim, G. H., S. H. Jung, J. W. Kim, H. S. Eom, S. H, Jung, G. J. Shin, W. C. Lee and I. S. Moon. 2003. The effect of Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells. The Journal of Korean Oriental Internal Medicine. 3, 396-405
  17. Kim, S. B., 2003. Effects of Scutellaria baicalensis Georgi on the gene expression in a hypoxic model of cultured rat cortical cells. Dongguk graduate school
  18. Knickerbocker, D. L. and P. L. Lutz. 2001. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. J. Exp. Biol. 204, 3547-3551
  19. Krieglstein, J. 1990. Tharmacology and drug therapy of cerebral ischemia. pp347-371. In Schurr, A and B. M. Rigor (eds), Cerebral ischemia and resuscitation, Boca Raton CRC
  20. Kroemer, G., B. Dallaporta and Resche-Rigon M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Ann. Rev. Physiology. 60, 619-642 https://doi.org/10.1146/annurev.physiol.60.1.619
  21. Lee, B. C., H. L. Kang, Y. O. Kim, S. Y. Kim, D. K. Ahn, H. K. Park and H. C. Kim. 1999. Neuroprotective Effects of Scutellariae Radix on the Brain Ischemia induced by Four - Vessel Occlusion in Rats. The Korea Association of Herbology 14, 89-96
  22. Lee J. H., S. J. Shin and Y. Moon. 1998. Effect of Scutellaria baicalensis Extract on the Immune Functions, Microbial Growth and Mutagenicity. The Korean Association of Immunobiologists 20, 343-348
  23. Levy, A.P., N.S. Levy, S. Wegner and M. A. Goldberg. 1995. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol Chem. 270, 13333-13340 https://doi.org/10.1074/jbc.270.22.13333
  24. Mangelsdorf, D. J., S. A. Kliewer, A. Kakizuka. K. Umesono and R. M. Evans. 1993. Retinoid receptors. Recent Prog. Horm. Res. 48, 99-121
  25. Nieminen, A. L. 2003. Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol. 224, 29-55 https://doi.org/10.1016/S0074-7696(05)24002-0
  26. Nilsson, G. E. 2001. Surviving anoxia with the brain turned on. News Physiol Sci. 16, 217-221
  27. Prabhakar, N. R., J. L. Overholt. 2001. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Resp. Physiol. 122, 209-221
  28. Prabhaker, N. R. and J. L. Overholt. 2000. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Resp. Physiol. 122, 209-221 https://doi.org/10.1016/S0034-5687(00)00160-2
  29. Rossi, D.J., T. Oshima and D. Attwell. 2000. Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature. 403, 316-321 https://doi.org/10.1038/35002090
  30. Semenza, G. L. 1999. Regulation of mammalian $O_2$ homeostasis by hypoxia-inducible factor 1. Ann. Rev. Cell Dev. Biol. 15, 551-578 https://doi.org/10.1146/annurev.cellbio.15.1.551
  31. Semenza, G. L. 1998. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin. Genet. Dev. 8, 588-594 https://doi.org/10.1016/S0959-437X(98)80016-6
  32. Semenza, G. L., P. H. Roth, H. M. Fang and G. L. Wang. 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757-23763
  33. Semenza, G. L., B. H. Jiang, S. W. Leung, R. Passantino, J. P. Concordet, P. Maire and A. Giallongo. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537 https://doi.org/10.1074/jbc.271.51.32529
  34. Wuarin, L. and N. Sidell. 1991. Differential susceptibilities of spinal cord neurons to retinoic acid-induced survival and differentiation. Dev. Biol. 144, 429-435 https://doi.org/10.1016/0012-1606(91)90435-6
  35. Wuarin, L., N. Sidell, J. de Vellis. 1990. Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int. J. Dev Neurosci. 8, 317-326 https://doi.org/10.1016/0736-5748(90)90038-4
  36. Yang, Y., Ms Vacchio and J. D. Ashwell. 1993. 9-cis-retinoic acid inhibits activation-driven T-cell apoptosis: implications for retinoid X receptor involvement in thymocyte development. Proc. Natl. Acad. Sci. USA. 90, 6170-6174 https://doi.org/10.1073/pnas.90.13.6170
  37. Yin W., W. Raffelsberger and H. Gronemeyer. 2005. Retinoic acid determines life span of leukemic cells by inducing antagonistic apoptosis-regulatory programs. Int. J. Biochem. Cell Biol. Aug;37(8), 1696-708 https://doi.org/10.1016/j.biocel.2005.03.003
  38. Yoon, K. S. 2004. Effects of Scutellaria baicalensis GEORGI(黃芩) on the Modulation of ROS, MMP, in a Hypoxic Model of Cultured Rat Cortical Cells. Dongguk graduate school
  39. Lee S. J. 1995. Bon-cho-kang-mok, pp. 580, Daesung Medical press, Seoul
  40. Wang-Ang. 1989. Bon-cho-bi-yo, pp. 44-45, Komoonsa, Seoul
  41. Ji H. J., S. I. Lee and D. G. Ann. 1998. Hanyak-Gyugyuk-Juhae, pp. 686-688, Korean medical index com. Seoul
  42. Heo J. 1999. Dong-Eui-Bo-Cam, pp. 367, 1024, 1937, 1938, Bubinbooks, Seoul
  43. Hwang D. Y. 1989. Bang Yak Hap Pyun, pp. 120-130, Namsandang, Seoul
  44. Lee J. M. 1992. Dongyi-Suse-Bowon, Yeogang book publisher
  45. Kim. H. G. 2000. Pharmacology of Korea, pp. 222-227, Korea medical book publisher