Isolation and Characterization of Mucous Exopolysaccharide (EPS) Produced by Vibrio furnissii Strain VB0S3

  • Bramhachari P.V. (Department of Microbiology, Goa University) ;
  • Kishor P.B. Kavi (Department of Genetics, Osmania University) ;
  • Ramadevi R. (Department of Genetics, Osmania University) ;
  • Kumar Ranadheer (Department of Genetics, Osmania University) ;
  • Rao, B. Rama (Indian Institute of Chemical Technology) ;
  • Dubey Santosh Kumar (Department of Microbiology, Goa University)
  • Published : 2007.01.31

Abstract

Marine bacterial strains were isolated trom coastal regions of Goa and screened for the strains that produce the highest amount of mucous expolysaccharide (EPS). Our screening resulted in the identification of the strain Vibrio furnissii VB0S3 (hereafter called VB0S3), as it produced the highest EPS in batch cultures during the late logarithmic growth phase. The isolate was identified as VB0S3 based on morphological and biochemical properties. Growth and EPS production were studied in mineral salts medium supplemented with NaCl (1.5%) and glucose (0.2%). The exopolymer was recovered from the culture supernatant by using three volumes of cold ethanol precipitation and dialysis procedure. Chemical analyses of EPS revealed that it is primarily composed of neutral sugars, uronic acids, and proteins. Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide, and the EPS also possessed good emulsification activity. The gas chromatographic analysis of an alditol-acetate derivatized sample of EPS revealed that it was mainly composed of galactose and glucose. Minor components found were mannose, rhamnose, fucose, ribose, arabinose, and xylose. EPS was readily isolated from culture supernatants, which suggests that the EPS was a slime-like exopolysaccharide. This is the first report of exopolysaccharide characterization that describes the isolation and characterization of an EPS expressed by Vibrio surnissii strain VB0S3. The results of the study contribute significantly and go a long way towards an understanding of the correlation between growth and EPS production, chemical composition, and industrial applications of the exopolysaccharide in environmental biotechnology and bioremediation.

Keywords

References

  1. Abu, G. O., R. M. Weiner, J. Rice, and R. R. Colwell. 1991. Properties of an extracellular adhesive polymer from the marine bacterium, Shewanella colwelliana. Biofoul 3: 69- 84 https://doi.org/10.1080/08927019109378163
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and E. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Alsina, M. and A. R. Blanch. 1994. A set of keys for the biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 76: 79-85 https://doi.org/10.1111/j.1365-2672.1994.tb04419.x
  4. Banat, I. M., R. S. Makkar, and S. S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508 https://doi.org/10.1007/s002530051648
  5. Baumann, P. and R. H. W. Schubert. 1984. Vibrionaceae, pp. 516-550. In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore
  6. BeMiller, J. N. and R. L. Whistler. 1996. Carbohydrates, pp. 178-185. In O. R. Fennerna (ed.). Food Chemistry, 3rd Ed. Marcel Dekker, N.Y
  7. Bhaskar, P. V. 2003. Studies on some aspects of marine microbial exopolysaccharides. Ph.D. Thesis, T-281, Goa University, Goa
  8. Bhaskar, P. V. and N. B. Bhosle. 2005. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Science 88: 1
  9. Bhosle, N. B., S. S. Sawant, A. Garg, and A. B. Wagh. 1995. Isolation and partial chemical analysis of exopolysaccharides from the marine fouling diatom Navicula subinflata. Botan. Marina 38: 103-110 https://doi.org/10.1515/botm.1995.38.1-6.103
  10. Bremer, P. J. and G. G. Geesey. 1991. An evaluation of biofilms development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofoul 3: 89-100 https://doi.org/10.1080/08927019109378165
  11. Cescutti, P., R. Toffanin, P. Pollesello, and I. W. Sutherland. 1999. Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. strain 1.15. Carbohyd. Res. 315: 159-168 https://doi.org/10.1016/S0008-6215(98)00318-8
  12. Christofi, N. and I. B. Ivshina. 2002. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929 https://doi.org/10.1046/j.1365-2672.2002.01774.x
  13. Costerton, J. W. 1999. The role of bacterial exopolysaccharides in nature and disease. J. Ind. Microbiol. Biotechnol. 22: 551-563 https://doi.org/10.1038/sj.jim.2900665
  14. Decho, A. W. 1990. Microbial exopolymer secretion in ocean environment, their roles in food webs and marine processes. Ocean. Mar. Biol. Annu. Rev. 28: 73-153
  15. Dische, Z. and L. B. Shettles. 1948. A specific colour reaction of methyl pentoses and a spectrophotometric micro method for their determination. J. Biol. Chem. 175: 595- 603
  16. Dische, Z. 1962. Color reactions of hexuronic acids. Meth. Carbohyd. Chemistry 1: 497-501
  17. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  18. Enos-Berlage, J. L. and L. L. McCarter. 2000. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J. Bacteriol. 182: 5513-5520 https://doi.org/10.1128/JB.182.19.5513-5520.2000
  19. Fazio, S. A., D. J. Uhlinger, J. H. Parker, and D. C. White. 1982. Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl. Environ. Microbiol. 43: 1151-1159
  20. Fett, W. F., J. M. Wells, P. Cescutti, and C. Wijey. 1995. Identification of exopolysaccharide produced by fluorescent Pseudomonads associated with commercial mushroom (Agaricus bisporus). Appl. Environ. Microbiol. 61: 513- 517
  21. Fishman, M. L., P. Cescutti, W. F. Fett, S. F. Osman, P. D. Hoagland, and A. Chau. 1997. Screening the physical properties of novel Pseudomonas exopolysaccharides by HPSEC with multi-angle light scattering and viscosity detection. Carbohyd. Polym. 32: 213-221 https://doi.org/10.1016/S0144-8617(97)00012-X
  22. Flemming, H.-C. and J. Wingender. 2001. Relevance of microbial extracellular polymeric substances (EPSs) - part I. Structural and ecological aspects. Water Sci. Technol. 4: 1-8
  23. Gauthier, M. J. and V. M. Breittmayer. 1990. Genera Alteromonas and Marinomonas. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The Prokaryotes, 2nd Ed. Springer-Verlag, New York
  24. Geesey, G. G., P. J. Bremer, J. J. Smith, M. Muegger, and L. K. Jang. 1992. Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica. Can. J. Microbiol. 38: 785-793 https://doi.org/10.1139/m92-128
  25. Grobe, S., J. Wingender, and H. G. Trufper. 1995. Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J. Appl. Microbiol. 79: 94-102 https://doi.org/10.1111/j.1365-2672.1995.tb03129.x
  26. Guezennec, J., O. Ortega-Morales, G. Raguenes, and G. Geesey. 1998. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol. Ecol. 26: 89-99 https://doi.org/10.1111/j.1574-6941.1998.tb00495.x
  27. Gutnick, D. L. and H. Bach. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 54: 451-460 https://doi.org/10.1007/s002530000438
  28. Hammer, B. K. and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50: 101-104 https://doi.org/10.1046/j.1365-2958.2003.03688.x
  29. Helm, D. and D. Naumann. 1995. Identification of some bacterial cell components by FTIR spectroscopy. FEMS Microbiol. Lett. 126: 75-80 https://doi.org/10.1111/j.1574-6968.1995.tb07393.x
  30. Hoagland, K. D., J. R. Rosowski, M. R. Gretz, and S. C. Roemer. 1993. Diatom extracellular polymeric substances: Function, fine structure, chemistry and physiology. J. Phycol. 29: 537-566 https://doi.org/10.1111/j.0022-3646.1993.00537.x
  31. Keene, L. and B. Lindberg. 1983. Bacterial polysaccharide, pp. 287-363. In G. O. Aspinall (ed.). The Polysaccharides, Vol. 2. Academic Press, N.Y
  32. Lee, S.-P., E. Troyano, J. Lee, H. S. Kim, and A. J. Sinskey. 2006. Cloning, sequencing and characterization of acyltransferase gene involved in exopolysaccharide biosynthesis of Zoogloea ramigera 115SLR. J. Microbiol. Biotechnol. 16: 1163-1168
  33. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  34. Majumdar, I., F. D'Souza, and N. B. Bhosle. 1999. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization. J. Ind. Inst. Sci. 79: 539- 550
  35. Mancuso Nichols, C. A., S. Garon, J. P. Bowman, G. Raguenes, and J. Guezennec. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol. 96: 1057-1066 https://doi.org/10.1111/j.1365-2672.2004.02216.x
  36. Mittleman, M. W. and G. G. Geesey. 1985. Copper-binding characteristics of exopolymers from a fresh water-sediment bacterium. Appl. Environ. Microbiol. 49: 846-851
  37. Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 60: 193-207 https://doi.org/10.1016/S0013-7952(00)00101-0
  38. Muralidharan, J. and S. Jayachandran. 2003. Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem. 38: 841-847 https://doi.org/10.1016/S0032-9592(02)00021-3
  39. Navon-Venezia, S., Z. Zosim, A. Gottlieb, R. Legmann, S. Carmeli, E. Z. Ron, and E. Rosenberg. 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61: 3240-3244
  40. Nielsen, P. H. and A. Jahn, 1999. Extraction of EPS, pp. 50- 72. In Wingender, J., Neu, T. R., and Flemming, H. C. (eds.), Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer-Verlag, Berlin, Germany
  41. Osman, S. F. and W. F. Fett. 1989. Structure of an acidic exopolysaccharide of Pseudomonas marginalis HT041B. J. Bacteriol. 171: 760-1762
  42. Park, N. Y., J. H. Lee, B. C. Lee, T. S. Kim, and S. H. Choi. 2006. Identification and characterization of the wbpO gene essential for lipopolysaccharide synthesis in Vibrio vulnificus. J. Microbiol. Biotechnol. 16: 808-816
  43. Parsek, M. R. and E. P. Greenberg. 1999. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Meth. Enzymol. 310: 43-55 https://doi.org/10.1016/S0076-6879(99)10005-3
  44. Raguenes, G., M. A. Cambon-Bonavita, J. F. Lohier, C. Boisset, and J. Guezennec. 2003. A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr. Microbiol. 46: 448-452 https://doi.org/10.1007/s00284-002-3922-3
  45. Read, R. R. and J. W. Costerton 1987. Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can. J. Microbiol. 33: 1080-1090 https://doi.org/10.1139/m87-189
  46. Rodrigues, C. and N. B. Bhosle. 1991. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium. Biofoul 4: 301-308 https://doi.org/10.1080/08927019109378220
  47. Rosenberg, E., A. Zuckerberg, C. Rubinovitz, and D. L. Gutnick. 1979. Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37: 402-408
  48. Rougeaux, H., R. Pichon, N. Kervarec, G. H. C. Raguenes, and J. G. Guezennec. 1996. Novel bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohyd. Polym. 31: 237-242 https://doi.org/10.1016/S0144-8617(96)00079-3
  49. Rougeaux, H., P. Talaga, R. W. Carlson, and J. Guezennec. 1998. Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp. fijiensis originating from a deep-sea hydrothermal vent. Carbohyd. Res. 312: 53-59 https://doi.org/10.1016/S0008-6215(97)10061-1
  50. Royan, S., C. Parulekar, and S. Mavinkurve. 1999. Exopolysaccharides of Pseudomonas mendocina $P_{2}d$. Lett. Appl. Microbiol. 29: 342-346 https://doi.org/10.1046/j.1472-765X.1999.00638.x
  51. Shepherd, R., J. Rockey, I. W. Sutherland, and S. Roller. 1995. Novel bioemulsifiers from microorganisms for use in foods. J. Biotechnol. 40: 207-217 https://doi.org/10.1016/0168-1656(95)00053-S
  52. Sutherland, I. W. 1996. Extracellular polysaccharides, pp. 615-657. In Rehm, H. J. and Reed, G. (eds.). Biotechnology, vol. 6. VCH, Weinheim
  53. Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  54. Sutherland, I. W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 147: 3-9 https://doi.org/10.1099/00221287-147-1-3
  55. Terho, T. T. and K. Hartiala. 1971. Method for determination of the sulfate content of glycosaminoglycans. Analyt. Biochem. 41: 471-476 https://doi.org/10.1016/0003-2697(71)90167-9
  56. Uhlinger, D. J. and D. C. White. 1983. Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl. Environ. Microbiol. 45: 64-70
  57. van Kranenburg, R., I. C. Boels, M. Kleerebezem, and W. M. de Vos. 1999. Genetics and engineering of microbial exopolysaccharides for food: Approaches for the production of existing and novel polysaccharides. Curr. Opin. Biotechnol. 10: 498-504 https://doi.org/10.1016/S0958-1669(99)00017-8
  58. Whitfield, C. 1988. Bacterial extracellular polysaccharides. Can. J. Microbiol. 34: 415-420 https://doi.org/10.1139/m88-073
  59. Williams, A. G. and J. W. T. Wimpenny. 1977. Exopolysaccharide production by Pseudomonas NICB 11264 grown in batch culture. J. Gen. Microbiol. 102: 113- 121
  60. Wingender, J., M. A. Strathmann, A. R. Leis, and H. C. Flemming. 2001. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol. 336: 302-314 https://doi.org/10.1016/S0076-6879(01)36597-7