Browse > Article

Isolation and Characterization of Mucous Exopolysaccharide (EPS) Produced by Vibrio furnissii Strain VB0S3  

Bramhachari P.V. (Department of Microbiology, Goa University)
Kishor P.B. Kavi (Department of Genetics, Osmania University)
Ramadevi R. (Department of Genetics, Osmania University)
Kumar Ranadheer (Department of Genetics, Osmania University)
Rao, B. Rama (Indian Institute of Chemical Technology)
Dubey Santosh Kumar (Department of Microbiology, Goa University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 44-51 More about this Journal
Abstract
Marine bacterial strains were isolated trom coastal regions of Goa and screened for the strains that produce the highest amount of mucous expolysaccharide (EPS). Our screening resulted in the identification of the strain Vibrio furnissii VB0S3 (hereafter called VB0S3), as it produced the highest EPS in batch cultures during the late logarithmic growth phase. The isolate was identified as VB0S3 based on morphological and biochemical properties. Growth and EPS production were studied in mineral salts medium supplemented with NaCl (1.5%) and glucose (0.2%). The exopolymer was recovered from the culture supernatant by using three volumes of cold ethanol precipitation and dialysis procedure. Chemical analyses of EPS revealed that it is primarily composed of neutral sugars, uronic acids, and proteins. Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide, and the EPS also possessed good emulsification activity. The gas chromatographic analysis of an alditol-acetate derivatized sample of EPS revealed that it was mainly composed of galactose and glucose. Minor components found were mannose, rhamnose, fucose, ribose, arabinose, and xylose. EPS was readily isolated from culture supernatants, which suggests that the EPS was a slime-like exopolysaccharide. This is the first report of exopolysaccharide characterization that describes the isolation and characterization of an EPS expressed by Vibrio surnissii strain VB0S3. The results of the study contribute significantly and go a long way towards an understanding of the correlation between growth and EPS production, chemical composition, and industrial applications of the exopolysaccharide in environmental biotechnology and bioremediation.
Keywords
Vibrio furnissii; exopolysaccharides (EPS); precipitation, emulsification activity; heteropolysaccharide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Abu, G. O., R. M. Weiner, J. Rice, and R. R. Colwell. 1991. Properties of an extracellular adhesive polymer from the marine bacterium, Shewanella colwelliana. Biofoul 3: 69- 84   DOI
2 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and E. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   DOI
3 Bhaskar, P. V. 2003. Studies on some aspects of marine microbial exopolysaccharides. Ph.D. Thesis, T-281, Goa University, Goa
4 Bhosle, N. B., S. S. Sawant, A. Garg, and A. B. Wagh. 1995. Isolation and partial chemical analysis of exopolysaccharides from the marine fouling diatom Navicula subinflata. Botan. Marina 38: 103-110   DOI   ScienceOn
5 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
6 Keene, L. and B. Lindberg. 1983. Bacterial polysaccharide, pp. 287-363. In G. O. Aspinall (ed.). The Polysaccharides, Vol. 2. Academic Press, N.Y
7 Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
8 Navon-Venezia, S., Z. Zosim, A. Gottlieb, R. Legmann, S. Carmeli, E. Z. Ron, and E. Rosenberg. 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61: 3240-3244
9 Nielsen, P. H. and A. Jahn, 1999. Extraction of EPS, pp. 50- 72. In Wingender, J., Neu, T. R., and Flemming, H. C. (eds.), Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer-Verlag, Berlin, Germany
10 Osman, S. F. and W. F. Fett. 1989. Structure of an acidic exopolysaccharide of Pseudomonas marginalis HT041B. J. Bacteriol. 171: 760-1762
11 Park, N. Y., J. H. Lee, B. C. Lee, T. S. Kim, and S. H. Choi. 2006. Identification and characterization of the wbpO gene essential for lipopolysaccharide synthesis in Vibrio vulnificus. J. Microbiol. Biotechnol. 16: 808-816   과학기술학회마을
12 Read, R. R. and J. W. Costerton 1987. Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can. J. Microbiol. 33: 1080-1090   DOI   ScienceOn
13 Sutherland, I. W. 1996. Extracellular polysaccharides, pp. 615-657. In Rehm, H. J. and Reed, G. (eds.). Biotechnology, vol. 6. VCH, Weinheim
14 Sutherland, I. W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 147: 3-9   DOI
15 Terho, T. T. and K. Hartiala. 1971. Method for determination of the sulfate content of glycosaminoglycans. Analyt. Biochem. 41: 471-476   DOI   ScienceOn
16 Uhlinger, D. J. and D. C. White. 1983. Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl. Environ. Microbiol. 45: 64-70
17 van Kranenburg, R., I. C. Boels, M. Kleerebezem, and W. M. de Vos. 1999. Genetics and engineering of microbial exopolysaccharides for food: Approaches for the production of existing and novel polysaccharides. Curr. Opin. Biotechnol. 10: 498-504   DOI   ScienceOn
18 Wingender, J., M. A. Strathmann, A. R. Leis, and H. C. Flemming. 2001. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol. 336: 302-314   DOI
19 Rougeaux, H., R. Pichon, N. Kervarec, G. H. C. Raguenes, and J. G. Guezennec. 1996. Novel bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohyd. Polym. 31: 237-242   DOI   ScienceOn
20 Dische, Z. and L. B. Shettles. 1948. A specific colour reaction of methyl pentoses and a spectrophotometric micro method for their determination. J. Biol. Chem. 175: 595- 603
21 Muralidharan, J. and S. Jayachandran. 2003. Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem. 38: 841-847   DOI   ScienceOn
22 Whitfield, C. 1988. Bacterial extracellular polysaccharides. Can. J. Microbiol. 34: 415-420   DOI   ScienceOn
23 Royan, S., C. Parulekar, and S. Mavinkurve. 1999. Exopolysaccharides of Pseudomonas mendocina $P_{2}d$. Lett. Appl. Microbiol. 29: 342-346   DOI   ScienceOn
24 BeMiller, J. N. and R. L. Whistler. 1996. Carbohydrates, pp. 178-185. In O. R. Fennerna (ed.). Food Chemistry, 3rd Ed. Marcel Dekker, N.Y
25 Lee, S.-P., E. Troyano, J. Lee, H. S. Kim, and A. J. Sinskey. 2006. Cloning, sequencing and characterization of acyltransferase gene involved in exopolysaccharide biosynthesis of Zoogloea ramigera 115SLR. J. Microbiol. Biotechnol. 16: 1163-1168   과학기술학회마을
26 Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46   DOI   ScienceOn
27 Williams, A. G. and J. W. T. Wimpenny. 1977. Exopolysaccharide production by Pseudomonas NICB 11264 grown in batch culture. J. Gen. Microbiol. 102: 113- 121
28 Banat, I. M., R. S. Makkar, and S. S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508   DOI   ScienceOn
29 Dische, Z. 1962. Color reactions of hexuronic acids. Meth. Carbohyd. Chemistry 1: 497-501
30 Fazio, S. A., D. J. Uhlinger, J. H. Parker, and D. C. White. 1982. Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Appl. Environ. Microbiol. 43: 1151-1159
31 Rodrigues, C. and N. B. Bhosle. 1991. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium. Biofoul 4: 301-308   DOI   ScienceOn
32 Raguenes, G., M. A. Cambon-Bonavita, J. F. Lohier, C. Boisset, and J. Guezennec. 2003. A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr. Microbiol. 46: 448-452   DOI   ScienceOn
33 Fett, W. F., J. M. Wells, P. Cescutti, and C. Wijey. 1995. Identification of exopolysaccharide produced by fluorescent Pseudomonads associated with commercial mushroom (Agaricus bisporus). Appl. Environ. Microbiol. 61: 513- 517
34 Grobe, S., J. Wingender, and H. G. Trufper. 1995. Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J. Appl. Microbiol. 79: 94-102   DOI
35 Rougeaux, H., P. Talaga, R. W. Carlson, and J. Guezennec. 1998. Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp. fijiensis originating from a deep-sea hydrothermal vent. Carbohyd. Res. 312: 53-59   DOI
36 Flemming, H.-C. and J. Wingender. 2001. Relevance of microbial extracellular polymeric substances (EPSs) - part I. Structural and ecological aspects. Water Sci. Technol. 4: 1-8
37 Hammer, B. K. and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50: 101-104   DOI   ScienceOn
38 Christofi, N. and I. B. Ivshina. 2002. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929   DOI   ScienceOn
39 Decho, A. W. 1990. Microbial exopolymer secretion in ocean environment, their roles in food webs and marine processes. Ocean. Mar. Biol. Annu. Rev. 28: 73-153
40 Gutnick, D. L. and H. Bach. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 54: 451-460   DOI   ScienceOn
41 Gauthier, M. J. and V. M. Breittmayer. 1990. Genera Alteromonas and Marinomonas. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The Prokaryotes, 2nd Ed. Springer-Verlag, New York
42 Mancuso Nichols, C. A., S. Garon, J. P. Bowman, G. Raguenes, and J. Guezennec. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol. 96: 1057-1066   DOI   ScienceOn
43 Mittleman, M. W. and G. G. Geesey. 1985. Copper-binding characteristics of exopolymers from a fresh water-sediment bacterium. Appl. Environ. Microbiol. 49: 846-851
44 Rosenberg, E., A. Zuckerberg, C. Rubinovitz, and D. L. Gutnick. 1979. Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37: 402-408
45 Baumann, P. and R. H. W. Schubert. 1984. Vibrionaceae, pp. 516-550. In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore
46 Alsina, M. and A. R. Blanch. 1994. A set of keys for the biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 76: 79-85   DOI
47 Costerton, J. W. 1999. The role of bacterial exopolysaccharides in nature and disease. J. Ind. Microbiol. Biotechnol. 22: 551-563   DOI   ScienceOn
48 Majumdar, I., F. D'Souza, and N. B. Bhosle. 1999. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization. J. Ind. Inst. Sci. 79: 539- 550
49 Guezennec, J., O. Ortega-Morales, G. Raguenes, and G. Geesey. 1998. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol. Ecol. 26: 89-99   DOI   ScienceOn
50 Geesey, G. G., P. J. Bremer, J. J. Smith, M. Muegger, and L. K. Jang. 1992. Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica. Can. J. Microbiol. 38: 785-793   DOI
51 Shepherd, R., J. Rockey, I. W. Sutherland, and S. Roller. 1995. Novel bioemulsifiers from microorganisms for use in foods. J. Biotechnol. 40: 207-217   DOI   ScienceOn
52 Bremer, P. J. and G. G. Geesey. 1991. An evaluation of biofilms development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofoul 3: 89-100   DOI   ScienceOn
53 Cescutti, P., R. Toffanin, P. Pollesello, and I. W. Sutherland. 1999. Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. strain 1.15. Carbohyd. Res. 315: 159-168   DOI   ScienceOn
54 Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 60: 193-207   DOI   ScienceOn
55 Parsek, M. R. and E. P. Greenberg. 1999. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Meth. Enzymol. 310: 43-55   DOI
56 Bhaskar, P. V. and N. B. Bhosle. 2005. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Science 88: 1
57 Helm, D. and D. Naumann. 1995. Identification of some bacterial cell components by FTIR spectroscopy. FEMS Microbiol. Lett. 126: 75-80   DOI
58 Hoagland, K. D., J. R. Rosowski, M. R. Gretz, and S. C. Roemer. 1993. Diatom extracellular polymeric substances: Function, fine structure, chemistry and physiology. J. Phycol. 29: 537-566   DOI   ScienceOn
59 Enos-Berlage, J. L. and L. L. McCarter. 2000. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J. Bacteriol. 182: 5513-5520   DOI   ScienceOn
60 Fishman, M. L., P. Cescutti, W. F. Fett, S. F. Osman, P. D. Hoagland, and A. Chau. 1997. Screening the physical properties of novel Pseudomonas exopolysaccharides by HPSEC with multi-angle light scattering and viscosity detection. Carbohyd. Polym. 32: 213-221   DOI