Osmoregulation and mRNA Expression of a Heat Shock Protein 68 and Glucose-regulated Protein 78 in the Pacific oyster Crassostrea gigas in Response to Salinity Changes

  • Jo, Pil-Gue (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Choi, Yong-Ki (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • An, Kwang-Wook (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Choi, Cheol-Young (Division of Marine Environment and Bioscience, Korea Maritime University)
  • 발행 : 2007.12.31

초록

Stress-inducible proteins may function in part as molecular chaperones, protecting cells from damage due to various stresses and helping to maintain homeostasis. We examined the mRNA expression patterns of a 68-kDa heat shock protein (HSP68) and 78-kDa glucose-regulated protein (GRP78) in relation to physiological changes in Pacific oyster Crassostrea gigas under osmotic stress. Expression of HSP68 and GRP78 mRNA in the gill significantly increased until 48 h in a hypersaline environment (HRE) and 72 h in a hyposaline environment (HOE), and then decreased. Osmolality and the concentrations of $Na^+$, $Cl^-$, and $Ca^{2+}$ in the hemolymph of HRE oysters significantly increased until 72 h (the highest value) and then gradually decreased; in HOE oysters, these values significantly decreased until 72 h (the lowest value), and then increased. These results suggest that osmolality and $Na^+$, $Cl^-$, and $Ca^{2+}$ concentrations were stabilized by HSP68 and GRP78, and indicate that these two stress-induced proteins play an important role in regulating the metabolism and protecting the cells of the Pacific oysters exposed to salinity changes.

키워드

참고문헌

  1. Ackerman, P. A. and G. K. Iwama, 2001. Physiological and cellular stress responses of juvenile rainbow trout to vibriosis. J. Aquat. Anim. Health, 13, 173-180 https://doi.org/10.1577/1548-8667(2001)013<0173:PACSRO>2.0.CO;2
  2. Beckmann, R. P., L. E. Mizzen and W. J. Welch, 1990. Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science, 248, 850-854 https://doi.org/10.1126/science.2188360
  3. Bond, H., M. J. Winter, J. M. Warne, C. R. McCrohan and R. J. Balment, 2002. Plasma concentrations of arginine vasotocin and urotensin II are reduced following transfer of the euryhaline flounder (Platichthys flesus) from seawater to fresh water. Gen. Comp. Endocrinol., 125, 113-120 https://doi.org/10.1006/gcen.2001.7736
  4. Bukau, B. and A. L. Horwich, 1998. The hsp70 and hsp60 chaperone machines. Cell, 92, 351-366 https://doi.org/10.1016/S0092-8674(00)80928-9
  5. Chang, Y. J., B. H. Min and C. Y. Choi, 2007. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp. Biochem. Physiol., 147, 112-128 https://doi.org/10.1016/j.cbpa.2006.12.003
  6. Cheng, T. C., 1981. Bivalves. (in) N. A. Ratcliffe and A. F. Rowley (eds.), Invertebrate Blood Cell. Academic Press, London, pp. 233-299
  7. Choi, C. Y., B. H. Min, P. G. Jo and Y. J. Chang, 2007. Molecular cloning of PEPCK and stress response of black porgy (Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen. Comp. Endocrinol., 152, 47-53 https://doi.org/10.1016/j.ygcen.2007.02.019
  8. Ciavarra, R. and A. Simeone, 1990. T lymphocyte stress response. Cell Immunol., 129, 363-367 https://doi.org/10.1016/0008-8749(90)90212-A
  9. Craig, E. A., J. S. Weissman and A. L. Horwich, 1994. Heat shock proteins and molecular chaperones: mediators, protein conformation and turnover in the cell. Cell, 78, 365-372 https://doi.org/10.1016/0092-8674(94)90416-2
  10. Craven, R. A., J. R. Tyson and C. J. Stirling, 1997. A novel subfamily of HSP70s in the endoplasmic reticulum. Trends Cell Biol., 7, 277-282 https://doi.org/10.1016/S0962-8924(97)01079-9
  11. Dimock, R. V., Jr., 1967. An examination of physiological variation in the American oyster, Crassostrea virginica. Masters thesis, Florida State University, Gainesville, FL, 63 pp
  12. Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama, 1997. Stress protein expression in Coho salmon with bacterial kidney disease. J. Aquat. Anim. Health, 9, 18-25 https://doi.org/10.1577/1548-8667(1997)009<0018:SPEICS>2.3.CO;2
  13. Gagnaire, B., H. Frouin, K. Moreau, H. Thomas-Guyon and T. Renault, 2006. Effect of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol., 10, 387-391 https://doi.org/10.1006/fsim.2000.0264
  14. Hartl, F. U., 1996. Molecular chaperones in cellular protein folding. Nature, 381, 571-580 https://doi.org/10.1038/381571a0
  15. Hendershot, L. M., J. Ting and A. S. Lee, 1988. Identity of the Immunoglobulin heavy chain binding protein with the 78,000 dalton glucose-regulated protein and the role of post-transcriptional modifications in its binding function. Mol. Cell. Biol., 8, 4250-4256 https://doi.org/10.1128/MCB.8.10.4250
  16. Hightower, L. E., 1991. Heat shock, stress proteins, chaperones and proteotoxicity. Cell, 66, 191-197 https://doi.org/10.1016/0092-8674(91)90611-2
  17. Hosoi M., S. Kubota, M. Toyohara, H. Toyohara and I. Hayashi, 2003. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci., 69, 395-400 https://doi.org/10.1046/j.1444-2906.2003.00634.x
  18. Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan, 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fish., 8, 35-56 https://doi.org/10.1023/A:1008812500650
  19. Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman, 1999. Heat shock proteins and physiological stress in fish. Am. Zool., 39, 901-909 https://doi.org/10.1093/icb/39.6.901
  20. Lee, A. S., 1987. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci., 12, 20-23 https://doi.org/10.1016/0968-0004(87)90011-9
  21. Lee K. M., T. Kaneko, F. Katoh and K. Aida, 2006. Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment. Gen. Comp. Endocrinol., 149, 285-293 https://doi.org/10.1016/j.ygcen.2006.06.009
  22. Little, E., M. Ramakrishnan, B. Roy, G. Gazit and A. S. Lee, 1994. The glucose regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukar. Gene Exp., 4, 1-18 https://doi.org/10.1615/CritRevEukarGeneExpr.v4.i1.10
  23. Little, E., G. Tocco, M. Baudry, A. S. Lee and S. S. Schreiber, 1996. Induction of glucose-regulated protein (glucose-regulated protein 78/Bip and glucose-regulated protein 94) and heat shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience, 75, 209-219 https://doi.org/10.1016/0306-4522(96)00267-9
  24. Loosanoff, V. L., 1953. Behavior of oyster in water of low salinities. Proc. Natl. Shellfish. Assoc., 43, 135-151
  25. Mazzarella, R. A. and M. Green, 1987. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum is homologous to the 90 kDa heat shock protein (hsp90) and the 94 kDa glucose regulated protein (GRP94). J. Biol. Chem., 262, 8875-8883
  26. Mills, D., 2000. Combined effects of temperature and algal concentration on survival, growth and feeding physiology of Pinctada maxima (Jameson) spat. J. Shellfish Res., 19, 159-166
  27. Morimoto, R. I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev., 12, 3788-3796 https://doi.org/10.1101/gad.12.24.3788
  28. Morgan, J. D. and G. K. Iwama, 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci., 48, 2083-2094 https://doi.org/10.1139/f91-247
  29. Navarro, J. M., G. E. Leiva, G. Martinez and C. Anguilera, 2000. Interactive effects of diet and temperature on the scope for growth of the scallop Argopectin purpuratus during reproductive conditioning. J. Exp. Mar. Biol. Ecol., 147, 67-83
  30. Piano, A., S. Franzellitti, F. Tinti and E. Fabbri, 2005. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene, 361, 119-126 https://doi.org/10.1016/j.gene.2005.06.034
  31. Sanders, B. M., 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol., 23, 49-75 https://doi.org/10.3109/10408449309104074
  32. Schlesinger, M. J., M. Ashburner and A. Tissieres, 1992. Heat Shock from Bacteria to Man. Cold Spring Harbor, NY: Cold Spring Harbor Press, pp. 131-137
  33. Somero, G. N. and R. D. Bowlus, 1983. Osmolytes and metabolic end products of molluscs: the design of compatible solute systems. Biochem. Physiol., 2. (in) P. W. Hochachka (ed.), Environmental Biochemistry and Physiology, The Mollusca, Vol. 2, London: Academic Press, pp. 77–100
  34. Teh, S. J., S. L. Clark, C. L. Brown, S. N. Luoma and D. E. Hinton, 1999. Enzymatic and histopathologic biomarkers as indicators of contaminant exposure and effect in Asian clam (Potamocorbula amurensis). Biomarkers, 4(6), 497-509 https://doi.org/10.1080/135475099230660
  35. Werner, I., 2004. The influence of salinity on the heat-shock protein response of Potamocorbula amurensis (Bivalvia). Mar. Environ. Res., 58, 803-807 https://doi.org/10.1016/j.marenvres.2004.03.097
  36. Werner, I. and D. E. Hinton, 1999. Field validation of hsp 70 stress proteins as biomarkers in Asian clam (Potamocorbula amurensis): is downregulation an indicator of stress? Biomarkers, 4(6), 473-484 https://doi.org/10.1080/135475099230633
  37. Werner, I. and D. E. Hinton, 2000. Spatial profiles of HSP70 proteins in Asian clam (Potamocorbula amurensis) in Northern San Francisco Bay may be linked to natural rather than anthropogenic stressors. Mar. Environ. Res., 50(1-5), 379-384 https://doi.org/10.1016/S0141-1136(00)00058-1
  38. Yokoyama, Y., H. Hashimoto, S. Kubota, A. Kuriyama, Y. Ogura, S. Mizuta, R. Yoshnaka and H. Toyohara, 2006. cDNA cloning of Japanese oyster stress protein homologous to the mammalian 78-kDa glucose regulated protein and its induction by heat shock. Fish. Sci., 72, 402-409 https://doi.org/10.1111/j.1444-2906.2006.01163.x