• Title/Summary/Keyword: GRP78

Search Result 67, Processing Time 0.033 seconds

GRP78 Secreted by Colon Cancer Cells Facilitates Cell Proliferation via PI3K/Akt Signaling

  • Fu, Rong;Yang, Peng;Wu, Hai-Li;Li, Zong-Wei;Li, Zhuo-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7245-7249
    • /
    • 2014
  • Glucose regulated protein 78 (GRP78) is usually recognized as a chaperone in the endoplasmic reticulum. However, increasing evidence indicates that GRP78 can be translocated to the cell surface, acting as a signaling receptor for a variety of ligands. Since little is known about the secretion of GRP78 and its role in the progression of colon cancer we here focused on GRP78 from colon cancer cells, and purified GRP78 protein mimicking the secreted GRP78 was able to utilize cell surface GRP78 as its receptor, activating downstream PI3K/Akt and Wnt/${\beta}$-catenin signaling and promote colon cancer cell proliferation. Our study revealed a new mode of action of autocrine GRP78 in cancer progression: secreted GRP78 binds to cell surface GRP78 as its receptor and activates intracellular proliferation signaling.

Glucose regulated protein 78 promotes cell invasion via regulation of uPA production and secretion in colon cancer cells

  • Li, Zongwei;Zhang, Lichao;Li, Hanqing;Shan, Shuhua;Li, Zhuoyu
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.445-450
    • /
    • 2014
  • Glucose regulated protein 78 (GRP78) is frequently highly expressed in tumor cells, contributing to the acquisition of several phenotypic cancer hallmarks. GRP78 expression is also positively correlated with tumor metastasis, and promotes hepatocellular carcinoma cell invasion via increasing cell motility, however, other mechanisms involving the prometastatic roles of GRP78 remain to be elucidated. Here we report that forced GRP78 expression promotes colon cancer cell migration and invasion through upregulating MMP-2, MMP-9 and especially uPA production. These effects of GRP78 are mediated by enhancing the activation of ${\beta}$-catenin signaling. Interestingly, we identify that GRP78 interacts with uPA both in the cells and in the culture medium, suggesting that GRP78 protein is likely to directly facilitate uPA secretion via protein-protein interaction. Taken together, our findings demonstrate for the first time that besides stimulation of cell motility, GRP78 can act by increasing proteases production to promote tumor cell invasion.

Biochemical Characterization of Glucose-Regulated Proteins, Grp94 and Grp78/BiP (Grp78/BiP과 Grp94의 생화학적 분석)

  • 강호성;김정락
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.167-176
    • /
    • 1995
  • Glucose-regulated proteins (grp's), srp94 3nd grp78/BiP, are a group of stress proteins which are highly synthesized in cells exposed to a variety of stressful agents including tunicamycin 3nd Ca2+ ionophore. Grp78/BiP is hon to function as a molecular chaperone which regulates the folding and assembly of secretory or membrane proteins, but the biological function of grp941 remains to be elucidated. In this study, we have examined the intracellular distribution of grV's and the function of srp94. Grp's are resident in the endoplasmic reticulum (ERI 3nd a specific sequence (Lys-Asp-Glu-Leu) at their C-terminus is known to be responsible for their retention within the ER. However, it has been unclear whether upon disturbance of cellular Caa+ homeostasis by the Ca2+ ionophore, grp94 is retained within the ER or secreted into the medium. In this study, we showed that in the presence of C3a+ ionophore, grp94 and gif78/BiP are present in the cells, mainly within the ER. We have also investigated whether grp94 might function as a molecular chaperone. Here we showed that in the immunoglobulin (Ig)-secreting hvbridom3 cells, grp94 transientlY interacts with fully glycosylated Is heavy chain, suggesting that grpg94 may be involved in facilitating the folding and assembly of Ig heavy chains.

  • PDF

Expression of GRP78 Enhance-CAT Fusion Constructs Microiniected into Xenopus Iceuis Oocytes (Xenopus 난자에 미세주입된 GRP78 Enhancer-CAT 이형접합자의 발현)

  • 김용규;김규성박경숙
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.137-143
    • /
    • 1994
  • Microiniection of genes Into Xenopus laeuis oocvtes in highly useful in the annvsis of gene regulation, since a large number of oocvtes can be injected in a relatively short time. The GRP78 enhancer has been identified to a 291-bp fragment that spans a region of GRP78 promoter between -378 and -87 (Lin et at., 1986: Kim and Lee, 1989). We examined whether this GRP78 enhancer is effective in directing expression of heterologous gene in Xenopus laeuis oocytes. The chloramphenicol acetvltransferase (CAT) fusion constructs containing the GRP78 promoter and the SV4O early promoter were constructed and were injected into nuclei of Xencpus laeuis oocvtes. The recipient oocvtes were then assayed for CAT activity. The fusion constructs exhibited higher activity as compared to SV40 promoter tested here. The GRP78 enhancer showed 8.5- to 9.2-fold enhancement over that of the SV4O promoter. The orientation of GRP78 enhancer with respect to the direction of CAT transcription unit had no significant effect. Thus, the GRP78 enhancer is a viable candidate for the construction of expression system for use in Xenopus laevss oocvtes and will be important for the studY of a gene expression throughout development.

  • PDF

Involvement of GRP78 in the Resistance of Ovarian Carcinoma Cells to Paclitaxel

  • Zhang, Li-Ying;Li, Pei-Ling;Xu, Aili;Zhang, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3517-3522
    • /
    • 2015
  • Background: Glucose regulated protein 78 (GRP78) is a type of molecular chaperone. It is a possible candidate protein that contributes to development of drug resistance. We first examined the involvement of GRP78 in chemotherapy-resistance in human ovarian cancer cell. Materials and Methods: The expression of GRP78 mRNA and protein were examined by RT-PCR and western blotting, respectively, in human ovarian cancer cells line (HO-8910). Sensitivity of HO-8910 to paclitaxel was determined with methyl thiazolyl tetrazolium (MTT). Suppression of GRP78 expression was performed using specific small-interfering RNA (siRNA) in HO-8910 cells, and cell apoptosis was assessed by flow cytometry. Statistical analysis was performed using the SPSS 15.0 statistical package. Results: HO-8910 cells, with high basal levels of GRP78, exhibited low sensitivity to paclitaxel. The mRNA and protein levels of GRP78 were dramatically decreased at 24h, 48h and 72h after transfection and the sensitivity to paclitaxel was increased when the GRP78 gene was disturbed by specific siRNA transfection. Conclusions: The results suggested that high GRP78 expression might be one of the molecular mechanisms causing resistance to paclitaxel, and therefore siRNA of GRP78 may be useful in tumor-specific gene therapy for ovarian cancer.

Spatio-Temporal Expression Pattern of Grp 78, a Putative Hoxc8 Downstream Target Gene, During Murine Embryogenesis

  • Kang Jin Joo;Kwon Yunjeong;Lee Eun Young;Park Hyoung Woo;Yang Hye-Won;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Grp78, discovered as one of the putative target genes of Hoxc8, is a highly conserved stress protein and functions as a molecular chaperone in the endoplasmic reticulum (ER). In order to see the stage-specific expression pattern of Grp78 during development, mouse embryos from day 7.5 to 17.5 p.c. were isolated, and RT-PCR as well as in situ hybridization was performed. When RT-PCR was performed using Grp78 specific primers, periodic expression pattern was detected. And also a region-specific expression pattern was detected with a strong expression in the trunk part of day 11.5 p.c. embryo, like that of Hoxc8. When in situ hybridization was performed, Grp78 was revealed to be expressed in the endoderm, somite, neuroepithelium cells of neural tube in early embryos. In the case of late embryos, Grp78 expression was detected in the liver, segmental bronchus within cranial lobe of lung, ossification center within the cartilage primordium of rib and vertebra, submandibular gland, as well as metanephros. These expression patterns are very much similar to those of Hoxc8. Since Hoxc8 has been reported to regulate apoptosis during organogenesis, it might be possible that the apoptotic function could have been conveyed through the expression of Grp78, implying that the Grp78 is one of the Hoxc8 downstream target genes.

  • PDF

Effects of Different Exercise Intensities on GRP-78 and GLUT-4 Expression in Soleus eus Muscle of Streptozotocin-Induced Diabetic Rats (운동강도의 차이가 Streptozotocin-유도 당뇨쥐의 가자미근 GRP-78과 GLUT-4 발현에 미치는 영향)

  • Kim Yang-Hee;Yoon Jin-Hwan
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.87-93
    • /
    • 2005
  • This study investigated the response of GLUT -4 and GRP-78 expression in soleus muscle of streptozotocin-induced diabetic rats by imposing different exercise intensities. F344 rats were randomly divided into 4 groups (n=15 in each group): Control (Control), diabetes-operation (DO), diabetes with low intensity exercise (DLE) and diabetes with high intensity exercise (DHE). The rats in DLE and DHE groups were exercised for 8 weeks by treadmill running. Blood glucose levels in DO were significantly higher compared to that in NORMAL whereas DLE showed the most lowest level in blood glucose among diabetic groups. Diabetic groups exhibited significantly lower level in insulin change and DLE showed significantly higher insulin level among diabetic groups. GRP-78 in DO was significantly $(167.05\%)$ higher than that in Control. GRP-78 in DLE was $139.41\%$ which is significantly higher compared to Control but when compared to DO and DHE, it was significant low. GRP-78 in DHE was $194.64\%$ which doubled the protein level in Control and showed the most highest level in all groups. GLUT-4 in DO was significantly $(33.58\%)$ higher compared to Control. GLUT-4 in DLE showed $124.58\%$ which was significant high compared to Control, DO and DHE. GLUT-4 in DHE showed $26.91\%$ compared to Control and was the most lowest level among all groups. It seems clear that chiefly low intensity exercise benefits diabetic patients in controlling blood glucose. It was concluded that low intensity exercise induces translocation of GLUT-4 which results in increased blood inflow, thus GRP-78 expression is decreased.

Grp78 is a Novel Downstream Target Gene of Hoxc8 Homeoprotein

  • Kang, Jin-Joo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Previously, we have identified 14 putative downstream target genes of Hoxc8 homeoprotein in F9 murine embryonic teratocarcinoma cells through proteomics analysis. Among those, we tested a possibility of a DNA-k type molecular chaperone, Grp78, as a direct downstream target of Hoxc8, by cloning a 2.4 kb upstream region of murine Grp78 into a reporter plasmid and by testing if Hoxc8 can regulate its expression. We observed that Hoxc8 proteins could transactivate the reporter gene, which was affected by small interference RNAs (siRNAs) against to Hoxc8, suggesting that Grp78 is a novel downstream target of Hoxc8 in vivo.

Regulation of the Endoplasmic Reticulum Stress by BIP/GRP78 is involved in Meiotic Maturation of Porcine Oocytes In Vitro

  • Park, Hyo-Jin;Park, Jae-Young;Kim, Jin-Woo;Yang, Seul-Gi;Jung, Jae-Min;Kim, Min-Ji;Park, Joung Jun;Koo, Deog-Bon
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.407-415
    • /
    • 2017
  • In the present study, we investigated the role of binding immunoglobulin protein/glucose-regulated protein, 78-kDa (BIP/GRP78)-regulated endoplasmic reticulum (ER)-stress on meiotic maturation and cumulus cells expansion in porcine cumulus-oocyte complexes (COCs). Previously, it has been demonstrated that unfolded protein response (UPR)-related genes, such as molecules involved in ER-stress defense mechanisms, were expressed in matured oocytes and cumulus cells during in vitro maturation (IVM) of porcine oocytes. However, BIP/GRP78-mediated regulation of ER stress in porcine oocytes has not been reported. Firstly, we observed the effects of knockdown of BIP/GRP78 (an UPR initiation marker) using porcine-specific siRNAs (#909, #693, and #1570) on oocyte maturation. Among all siRNAs, siRNA #693 significantly reduced the protein levels of UPR marker proteins (BIP/GRP78, ATF4, and P90ATF6) in porcine COCs observed by Western blotting and immunofluorescence analysis. We also observed that the reduction of BIP/GRP78 levels by siRNA#693 significantly inhibited the meiotic maturation of oocytes (siRNA #693: $32.5{\pm}10.1%$ vs control: $77.8{\pm}5.3%$). In addition, we also checked the effect of ER-stress inhibitors, tauroursodeoxycholic acid (TUDCA, $200{\mu}M$) and melatonin ($0.1{\mu}M$), in BIP/GRP78-knockdown oocytes. TUDCA and melatonin treatment could restore the expression levels of ER-stress marker proteins (BIP/GRP78, $p-eIF2{\alpha}$, $eIF2{\alpha}$, ATF4, and P90ATF6) in siRNA #693-transfected matured COCs. In conclusion, these results demonstrated that BIP/GRP78-mediated regulation of UPR signaling and ER stress plays an important role in in vitro maturation of porcine oocytes.

Effects of Different Exercise Intensities on GLUT-4 and GRP-78 Protein Expression in Soleus Muscle of Streptozotocin-Induced Diabetic Rats with Caffeine Oral Administration (카페인 경구투여가 운동강도 차이에 따른 당뇨유발 흰쥐 가자미근의 GLUT4 및 GRP78 단백질 발현에 미치는 영향)

  • Yoon, Jae-Suk;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.741-746
    • /
    • 2004
  • This study investigated the response of GLUT-4 and GRP-78 protein expression in soleus muscle of Streptozotocin-induced diabetic rats with caffeine oral administration by imposing different exercise intensities. Rats were randomly divided into 5 groups (n=6 in each group): diabetic group (D), diabetic-caffeine group (DC), diabetic-caffeine group with low intensity exercise (DCL), diabetic-caffeine group with moderate intensity exercise (DCM) and diabetic-caffeine group with high intensity exercise (DCH). The rats in DCL, DCM and DCH groups were exercised acutely by treadmill running for 8 meter/m, 16 meter/m and 25 meter/m, respectively. Little difference in GLUT-4 protein expression was shown in DC and DCL compared to D. GLUT-4 protein expression was decreased in DCM and increased in DCH was observed. GRP-78 protein expressions in DCL, DCM and DCH were little lower than that of D. An increase in GRP-78 protein was observed in DC. Improved insulin sensitivity with acute high intensity exercise gives the rats important therapy that lowers insulin requirement. This improvement of insulin sensitivity for glucose transport in skeletal muscle results from translocation of the GLUT-4 protein from the endoplasmic reticilum to the cell surface and increase in total quantity of GLUT-4 protein. It is not clear what mechanism reduced GRP-78 protein level in exercise group. It is merely conjectured that caffeine-induced lipolysis provided cells with energy in abundance and this relieved stress which cells are subjected to receive when performing exercise.