References
- G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Vol. 25, New York, 1968
- M. K. Chakraborty and J. Sen, MV-algebras embedded in a CL-algebra, Internat. J. Aprrox. Reason. 18 (1998), 217-229 https://doi.org/10.1016/S0888-613X(98)00007-3
- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490 https://doi.org/10.1090/S0002-9947-1958-0094302-9
- R. Dilworth and M. Ward, Residuated lattices, Trans. of A.M.S. 45 (1939), 335-354 https://doi.org/10.1090/S0002-9947-1939-1501995-3
- A. Di Nola, P. Flondor and L. Leustean, MV-modules, J. of Algebra 267 (2003), 21-40 https://doi.org/10.1016/S0021-8693(03)00332-6
- A. Di Nola, G. Georgescu and L. Leustean, Boolean products of BL-algebras, J. of Math. Anal. and Appl. 251 (2000), 106-131 https://doi.org/10.1006/jmaa.2000.7024
- P. Flonder and M. Sularia, On a class of residuated semilattice monoids, Fuzzy Sets and Systems 138 (2003), 149-176 https://doi.org/10.1016/S0165-0114(02)00390-1
- G. Georgescu and A. Lorgulescu, Pseudo MV-algebras, Multiple-Valued Logics 6 (2001), 193-215
- P. Hajek, Metamathematices of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998
- U. Hohle, Many valued topology and its applications, Kluwer Academic Publisher, Boston, 2001
- U. Hohle and E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995
- U. Hohle and S. E. Rodabaugh, Mathematics of fuzzy sets, logic, topology and measure theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Dordrecht, 1999
- P. T. Johnstone, Stone spaces, Cambridge University Press, Cambridge, 1982
- E. Turunen, Mathematics behind fuzzy logic, Springer-Verlag, Heidelberg, 1999