DOI QR코드

DOI QR Code

Residuated Partially Ordered Semigroups

  • Lee, Seok-Jong (Department of Mathematics, Chungbuk National University) ;
  • Kim, Yong-Chan (Department of Mathematics, Kangnung National University)
  • Published : 2007.12.25

Abstract

In this paper, we investigate the properties of residuated partially ordered sets as weak definitions of algebraic structures in many valued logics. We study the left(resp. right) residuated semigroups induced by right(resp. left) associated map. We give their examples.

Keywords

References

  1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Vol. 25, New York, 1968
  2. M. K. Chakraborty and J. Sen, MV-algebras embedded in a CL-algebra, Internat. J. Aprrox. Reason. 18 (1998), 217-229 https://doi.org/10.1016/S0888-613X(98)00007-3
  3. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490 https://doi.org/10.1090/S0002-9947-1958-0094302-9
  4. R. Dilworth and M. Ward, Residuated lattices, Trans. of A.M.S. 45 (1939), 335-354 https://doi.org/10.1090/S0002-9947-1939-1501995-3
  5. A. Di Nola, P. Flondor and L. Leustean, MV-modules, J. of Algebra 267 (2003), 21-40 https://doi.org/10.1016/S0021-8693(03)00332-6
  6. A. Di Nola, G. Georgescu and L. Leustean, Boolean products of BL-algebras, J. of Math. Anal. and Appl. 251 (2000), 106-131 https://doi.org/10.1006/jmaa.2000.7024
  7. P. Flonder and M. Sularia, On a class of residuated semilattice monoids, Fuzzy Sets and Systems 138 (2003), 149-176 https://doi.org/10.1016/S0165-0114(02)00390-1
  8. G. Georgescu and A. Lorgulescu, Pseudo MV-algebras, Multiple-Valued Logics 6 (2001), 193-215
  9. P. Hajek, Metamathematices of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998
  10. U. Hohle, Many valued topology and its applications, Kluwer Academic Publisher, Boston, 2001
  11. U. Hohle and E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995
  12. U. Hohle and S. E. Rodabaugh, Mathematics of fuzzy sets, logic, topology and measure theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Dordrecht, 1999
  13. P. T. Johnstone, Stone spaces, Cambridge University Press, Cambridge, 1982
  14. E. Turunen, Mathematics behind fuzzy logic, Springer-Verlag, Heidelberg, 1999