DOI QR코드

DOI QR Code

Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling

신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어

  • 조현철 (동아대학교 전기공학과) ;
  • 이진우 (동아대학교 전기공학과) ;
  • 이영진 (한국폴리텍 항공대학 항공전기과) ;
  • 이권순 (동아대학교 전기공학과)
  • Published : 2007.12.25

Abstract

Captions which appear in images include information that relates to the images. In order to obtain the information carried by captions, the methods for text extraction from images have been developed. However, most existing methods can be applied to captions with fixed height of stroke's width. We propose a method which can be applied to various caption size. Our method is based on connected components. And then the edge pixels are detected and grouped into connected components. We analyze the properties of connected components and build a neural network which discriminates connected components which include captions from ones which do not. Experimental data is collected from broadcast programs such as news, documentaries, and show programs which include various height caption. Experimental result is evaluated by two criteria : recall and precision. Recall is the ratio of the identified captions in all the captions in images and the precision is the ratio of the captions in the objects identified as captions. The experiment shows that the proposed method can efficiently extract captions various in size.

영상에 나타나는 자막은 영상과 관계가 있는 정보를 포함한다. 이러한 영상과 관련 있는 정보를 이용하기 위해 영상으로부터 자막을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존의 연구는 일정한 높이의 자막이나 획의 두께를 지닌 자막에서만 정상적인 작동을 한다. 본 논문에서는 일정 크기 이상의 자막에 대해서 적용할 수 있는 크기에 무관한 자막 추출 방법을 제안한다. 먼저, 자막 연결 객체의 패턴 추출을 위해서 자막이 포함된 영상을 수집하고, 신경망을 이용해서 자막의 패턴을 분석한다. 그 후로는 사전에 추출한 패턴을 이용하여 입력 영상에서 자막을 추출한다. 실험에 사용된 영상은 뉴스, 다큐멘터리, 쇼 프로그램과 같은 대중 방송에서 수집하였다. 실험 결과는 다양한 크기의 자막을 포함한 영상을 사용하여 실험하였고, 자막 추출의 결과는 찾아진 연결객체 중에 자막의 비율과 자막 중에 찾아진 자막의 비율로 분석하였다. 실험 결과를 보면 제안한 방법에 의해 다양한 크기의 자막을 추출할 수 있음을 보여준다.

Keywords

References

  1. M. Basin, A. Ferreira, and L. Fridman, 'Sliding mode identification and control for linear uncertain stochastic systems,' Int. J of Systems Science, vol. 38, no. 11, pp. 861-869, 2007 https://doi.org/10.1080/00207720701409363
  2. Y. Liu, Z. Wang, and X. Liu, 'Robust H infinity control for a class of nonlinear stochastic systems with mixed time delay,' Int. J. of Robust and Nonlinear Control, vol. 17, no. 16, pp. 1525-1551, 2007 https://doi.org/10.1002/rnc.1185
  3. N. S. Demin and S. V. Rozhkova, 'Optimal control of stochastic systems in the case of continuous-discrete observation channels with memory,' Automatic Control and Computer Sciences, vol. 40, no. 6, pp. 1 -10, 2006
  4. H. Bauer and U. Rieder, 'Stochastic control problems with delay,' Mathematical Methods of Operations Research, vol. 62, no. 3, pp. 411-427, 2005 https://doi.org/10.1007/s00186-005-0042-4
  5. C.-C. Lin, H. Peng, and J. W. Grizzle, 'A stochastic control strategy for hybrid electric vehicles,' American Control Conference, vol. 5, no. 30, pp. 4710-4715, 2004
  6. S. Haykin, Neural networks: A comprehensive foundation, Upper Saddle River, New Jersey, Prentice Hall, 1999
  7. S. K. Mitra, Digital signal processing, New York, McGraw Hill, 2006
  8. M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' IEE Proceedings-F, vol. 138, no. 1, pp. 55-62, 1991
  9. P. Sadegh and J. C. Spall, 'Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation,' IEEE Trans. on Automatics Control, vol. 43, no. 10, pp. 1480-1484, 1998 https://doi.org/10.1109/9.720513
  10. J. C. Spall, Introduction to stochastic search optimization, Wiley- Interscience, 2003
  11. S. Ablameyko, M. Gori, L. Goras, and V. Piuri, editors, Impact of neural networks on signal processing and communications, of Limitations and Future Trends in Neural Computation, NATO Science Series, 2003
  12. K. Patan and T. Parisini, 'Identification of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process,' J. of Process Control, vol. 15, no. 1, pp. 67-79, 2005 https://doi.org/10.1016/j.jprocont.2004.04.001
  13. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, Wiley- Interscience Publication, New York, 2001
  14. L. Gyorfi and G. Ottucsak, 'Sequential prediction of unbounded stationary time series,' IEEE Trans. on Information Theory, vol. 53, no. 5, pp. 1866-1872, 2007 https://doi.org/10.1109/TIT.2007.894660
  15. K. Murphy, Dynamic Bayesian networks: Representation Inference and Learning Ph D. Dissertation, UC Berkeley, 2002
  16. F. Tian, H. Zhang, and Y. Lu, 'Research on modeling with dynamics Bayesian networks,' Proc. of the IEEE/WIC International Conference on Web Intelligence, pp. 606-609, 2003
  17. J. R. Norris, Markov chains, Cambridge University Press, 1998
  18. H. Cho and M. Sami Fadali, 'Online estimation of dynamic Bayesian network parameter,' IEEE WCCI, Vancouver, Canada, pp. 6395-6402, 2006
  19. Z. Li and R. J. Evans, 'Generalised minimum variance control of linear time-varying systems,' IEE Proc.-Control Theory and Applications, vol. 149, no. 1, pp. 111-116, 2002 https://doi.org/10.1049/ip-cta:20020254