DOI QR코드

DOI QR Code

금속선의 주기적 배열로 유도된 장주기 격자를 이용한 이득 평탄화된 광섬유 증폭기 제작

Fabrication of an Optical Fiber Amplifier Using Long-period Fiber Gratings Formed by Periodically Arrayed Metal Wire

  • 손경락 (한국해양대학교 컴퓨터.제어.전자통신공학부) ;
  • 황웅 (한국해양대학교 전자통신공학) ;
  • 심준환 (한국해양대학교 컴퓨터.제어.전자통신공학부)
  • Sohn, Kyung-Rak (Division of Computer, Control and Electronic Communications Engineering, Korea Maritime University) ;
  • Hwang, Woong (Department of Electronic Communications Engineering, Korea Maritime University) ;
  • Shim, June-Hwan (Division of Computer, Control and Electronic Communications Engineering, Korea Maritime University)
  • 발행 : 2007.12.31

초록

본 연구에서는 이득 평탄화된 어븀첨가 광섬유 증폭기를 제작하였다. 이득 평탄화 필터는 주기적으로 배열된 금속선을 이용하여 유도되는 장주기 광섬유 격자로 구현하였다. 980 nm 펌핑 레이저에 의해 증폭된 자발방출 출력 스펙트럼의 C-밴드 파장 영역에서 이득 리플을 제작된 필터를 적용하여 1 dB 이내로 억제하였다. 다중 채널을 동시에 증폭시킬 수 있는 성능은 페브리 페롯 레이저 다이오드를 이용하여 측정하였고 C-밴드에서 20 dB 이상 증폭시킬 수 있음을 보여주었다. 이 증폭기는 파장분할 다중화 방식의 장거리 광 전송에서 다중 채널을 동시에 증폭하는 효과적인 방법을 제공할 것이다.

In this study, we have fabricated a gain flattened erbium-doped optical fiber amplifier. Gain flattening filters were realized by the strain-induced long period fiber gratings, which are made of periodically arrayed metal wires. Using the filter of $550{\mu}m$ period, spontaneous emission amplified at C-band wavelength by a 980nm pumping laser was flattened within 1dB of gain ripple. The performance of the simultaneous multi channel amplification was measured using a fabry-perot laser diode. Amplification ratio was above 20dB. This amplifier can be applied to the long distance transmission system based on a wavelength division multiplexing for boosting an attenuated signal.

키워드

참고문헌

  1. Baldwin, C., Chen, P., Kiddy, J., Niemczuk, J., Christiansen, M. Vaithyanathan, K. and Chen, S. (2001), "Structural testing of a Navy LPD-17 propulsion propeller using Bragg grating sensors and digital spatial wavelength domain multiplexing", Proc, of SPIE, vol. 4332, pp. 124-132. https://doi.org/10.1117/12.429649
  2. Becker, P. C., Olsson, N. A. and Simpson, J. R. (1999), "Erbium-doped Fiber Amplifiers-Fundamentals and Technologies", Academic Press.
  3. Borinski, J. W. and Meller, S. A. (2001), "Fiber optic sensors for machine health monitiring", Proc. of SPIE, vol. 4191, pp.55-65. https://doi.org/10.1117/12.417247
  4. Hamdi, M. and Qiao, C. (2003), "Special Issue: Engineering the next-generation optical internet", Optical Networks Magazine, vol. 4, pp. 5-6.
  5. Harumoto, M., Shigehara, M., Suganuma, H. and Suganuma, H. "Gain-flattening filter using long-period fiber gratings, J. Lightwave Technol.," vol. 20, pp. 1027-1033. https://doi.org/10.1109/JLT.2002.1018814
  6. Ishii, Y., Okude, S. Nishide, K. and Wada A. (2001), "Athermalization of wideband EDFA gain profile using a phase-shifted long-period fiber grating, Proc. 27th Eur. Conf. on Opt. Comm., Amsterdam", pp. 82-83.
  7. Lee, C. L. and Lai, Y. (2002), "Evolutionary programming synthesis of optimal long-period fiber grating filters for EDFA gain flattening", IEEE Photon. Technol. Lett., vol. 14, pp. 1557-1599. https://doi.org/10.1109/LPT.2002.803910
  8. Poloso, T.(2001), "Fiber bragg gratings optical sensing technology", Smart Materials Bulletin, september, pp. 7-10.
  9. Sohn, K. R. and Kim, K. T. (2005), "Thermo-optically tunable band-rejection filters usinf mechanically formed long-period fiber gratings", Opt. Lett., vol. 30, pp. 2688-2690. https://doi.org/10.1364/OL.30.002688
  10. Vengsarkar, A. M., Pedrazzani, J. R., Judkins, J. B. and Lemaire, P. J. (1996), "Long-period fiber-grating-based gain equalizers", Opt. Lett., vol. 21, pp. 336-338. https://doi.org/10.1364/OL.21.000336