• Title/Summary/Keyword: 엽리상화강암

Search Result 24, Processing Time 0.02 seconds

Nature of contact between the Ogcheon belt and Yeongnam massif and the Pb-Pb age of granitic gneiss in Cheondong-ri, Danyang (단양 천동리 지역 옥천대/영남육괴의접촌관계와 소위 화강암질 편마암의 Pb-Pb 연대)

  • 권성택;이진한;박계헌;전은영
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.144-152
    • /
    • 1995
  • The Jangsan Quartzite of the Joseon Supergroup and the foliated granite (so-called granitlc gneiss of presumed Precambrian age) of the Yeongnam massif are in direct contact at Cheondong-ri area, 6 km @SE of Danyang. sllthough it has been thought traditionally that the Jangsan Quartzite overlies unconformably the f&ted granite, it is difficult to interpret the contact as an unconformity smce the basal conglomerate in- the lower part of the Jangsan Quartzite does not have any clast of the foliated granite, Rather, recent structural studies of this area indlcate that the contact is a ductile shear zone. However, the sense and age of the shear movement are still problematic. Our mesoscopic and microscopic studies of &tre Cheondong-11 semi-brittle shear zone involving foliated cataclasite and phyllonite, which is a pa& of the Ogdong fault, indlcate a top-to-the northeast shearing, i.e., dextral strike slip. We also performed Pb-Pb dating for the age-unknown foliated granite, since the age of deformed granite ccarr emtrain the maximum age of deformation. The whole rock and feldspar Pb isotape data for the foliated granite and a micaceous xenolith define an isoc chron age of $2.16{\pm}0.15$ Ga ($2{\sigma}$;MSWD=4.4) which is interpreted as the emplacement age of the granite. This early Proterozoic age agrees with those of Precambrian igneous activity In the Yeongnam massif reported previously. The obtaiPrfid gge confirms the traditional idea about the age of the foliated granite and indicates that other methd(s) should be employed to constrain the age of the shear movement.

  • PDF

CHIME Monazite Ages of Jurassic Foliated Granites in the Vicinity of the Gangjin Area, Korea (강진 인근 쥬라기 엽리상 화강암류의 CHIME 모나자이트 연대측정)

  • Cho, Deung-Lyong;Kee, Weon-Seo;Suzuki, Kazuhiro
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.101-115
    • /
    • 2007
  • The CHIME (chemical Th-U-total Pb isochron method) dating on monazite was carried out for two foliated granites from a dextral ductile shear zone in the vicinity of Gangjin area, which is considered to be a southern extension of Sunchang shear zone. The result gives emplacement age of the medium-grained biotite granite and the coarse-grained biotite granite as $183.6{\pm}2.2Ma$(MSWD=0.21) and $171.7{\pm}4.0Ma$(MSWD=0.57), respectively. Microtextures of quartz and feldspar observed in the foliated granite are almost identical with those reported in Jurassic (ca 180 Ma) foliated granites from the Imsil-Namwon area of the Sunchang shear zone, and they constraint that the ductile deformation took place at temperature condition of $300{\sim}550^{\circ}C$. Assuming cooling curves of the foliated granites in this study are similar with those of Jurassic foliated granites from Imsil-Namwon area, dextral ductile shear in the Gangjin area would take place between 172 Ma and 150 Ma, about 10 Ma later than the previous estimation based on CHIME monazite ages.

Petrochemistry of Granitoids in the Younggwang-Kimje area, Korea (영광-김제 지역 화강암류의 암석화학적 연구)

  • Park, Young-Seog;Kim, Jong-Kyun;Kim, Jin
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • Granitoids in the Younggwang-Kimje area can be divided into two types of granite. One is foliated granite (Cheongup and Kochang foliated granites) developed along the NE-SW direction kwangju fault system and the other is undeformed granite (Kimje and Younggwang granites) developed in the western part of the area. $SiO_2$ content of study area, Younggwang granite is 62.8-74.0%, Kochang foliated granite is 64.5-74.4%, Cheongup foliated granite is 64.5-70.2%, Kimje granite is 63.4-72.0%. The result indicated that these granitoids belong to the intermediate and acidic rock. In Harker's diagram, as $SiO_2$ increases, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $TiO_2$> $P_2O_{5}$s and MnO decrease, but $K_2O$ increases. In AFM diagram, Younggwang granite, Kochang foliated granite, Cheongup foliated granite and Kimje granite belong to calk-alkaline rock series. And in triangular diagrams of normative Qz-Or-Pl and An-Ab-Or, they are located in granodiorite and granite region. On the co-variation diagrams of trace elements with silica, Ba, Co, Li, Nb, An, Rb elements show increasing patterns. The diagrams of ACF and $Na_2O$ vs. $K_2O$ ratios indicate that granitoids of the study area belong to I-type.

  • PDF

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang Area(I) -In the Light of Petrochemical Properties- (전주 및 순창지역에 분포하는 엽리상화강암류의 성인에 대한 연구(I) - 암석지화학적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Sung;Chung, Jae-Il
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.480-492
    • /
    • 1997
  • In order to understand the processes involved in the petrogenesis and the differentiation of the primary magma spectrum, a petrological and geochemical properties were investigated for the Chonju and the Sunchang foliated granites, which are located in the southwestern part of the Okchon zone and extends up to the northwestern boundary of the Ryongnam massif as two subparallel batholiths. Major element analyses show that the Chonju and Sunchang foliated granites are classified petrologically into a weakly to strongly peraluminous or calc-alkaline, but do not fit neatly into either of the I/S-type or magnetite/ilmenite-series classification schemes for granites, although the I-type and magnetite-series characteristics seem to be predominant based on the major element chemistry. In normative compositions, the Chonju granite is petrographically evolved from granodiorite to granite, whereas the Sunchang granite is from granodiorite to quartz monzodiorite. It seems to suggest a difference of the magmatic evolution processes such as crustal assimilation and/or fractional crystallization in magma. The REE patterns of both batholiths show high similarity and strongly fractionated REE distributions which show high $(Ce/Yb)_N$ ratios and little or no Eu anomalies. These REE patterns correspond broadly to those seen in the pre-Cretaceous granitoids of Korea. Apparently, the evidences obtained from the bulk compositions strongly suggest that the two foliated granitoids were formed by partial meltings of a relatively restricted and similar, may be common, source material which contains a continental crust component having an igneous composition, and have undergone a similar magmatic differentiation processes.

  • PDF

Petrochemistry and Sr ${\cdot}$ Nd Isotopic Composition of foliated Granite in the Jeoniu Area, Korea (전주지역 엽리상화강암의 암석화학 및 Sr ${\cdot}$ Nd 동위원소 조성)

  • Shin, In-Hyun;Park, Cheon-Young;Jeong, Youn-Joong
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Composition of the major and trace elements, Rb-Sr isochron age Sr-Nd isotope composition were determined for foliated in the Jeonju area, in the middle part of the Ogcheon Fold Bet, Korea. The geochemical characteristics of the Jeonju foliated granite indicate that the granite had been crystallized from a calc-alkaline series, and formed in a volcanic are environment. The isotopic compositions of the Jeonju foliated granite give Rb-Sr whole rock errorchron age of 168.2${\pm}$8 Ma(2${\sigma}$), corresponding to the middle Jurassic period, with the Sr initial ratio of 0.71354${\pm}$0.00031. $^{143}$Nd/$^{144}$Nd ratios, ${\varepsilon}$Nd and ${\varepsilon}$Sr values range from 0.511477 to 0.511744, -15.4${\sim}$-21.2, and +108.8${\sim}$+l42.6, respectively. Model ages were caculated to be 1.82${\sim}$2.89Ga. The isotopic data of Jeonju foliated granite indicate that the source material may have been derived from partial melting of continental crust materials.

  • PDF

신암리각섬암의 암석화학과 지구조적 의의

  • 박영석;김정빈;김종균
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • 진안-장수지역 (이하 본 역)은 한반도를 구성하는 중요한 지괴인 영남육괴 지리산지역의 북서부와 옥천지향사대의 동남연변부에 위치한 곳으로 두 지괴의 경계면을 따라 압쇄작용으로 형성된 순창전단대가 분포하며 지질시대와 암석학적 특징이 상이한 여러 화성암체가 나타난다. 본 연구지역의 지질은 지리산 편마암복합체를 기반으로 선캠브리아기의 변성퇴적암류, 신암리섬암, 장수화강편마암, 선각산화강편마암 그리고 쥬라기의 대성리엽리상화강암, 순창엽리상화강암과 남원화강암으로 구성된다. (중략)

  • PDF

Conservation Treatment and Deterioration Evaluation of the Namwon Singyeri Maaeyeoraejwasang (Rock-Carved Seated Buddha Statue), Korea (남원 신계리 마애여래좌상의 손상도 평가 및 보존처리)

  • Chun, Yu Gun;Lee, Myeong Seong;Lee, Jae Man;Lee, Jae Jin
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.321-332
    • /
    • 2013
  • Namwon Singyeri Maaeyeoraejwasang (Rock-Carved Seated Buddha Statue) is composed mainly foliated granite and is different metamorphic grade and weathering degree on rock location. As the results of deterioration evaluation, upper part of the buddha statue was estimated that granularity decomposition was serious and rock strength was lower than lower part. Furthermore organism assessed most effect of among weathering factors. Chl. a amount of organism species were calculated $0.2{\mu}g/cm^2$ of crustaceous lichen, $1.1{\mu}g/cm^2$ of foliose lichen, $2.3{\mu}g/cm^2$ of bryophyte. Organism was taken treatment in order of amount of Chl. a and pre-cleaning, dry cleaning, wet cleaning in sequence. It should be establish conservation plan that strengthening in consideration of lithology characteristics and setting in good condition environment to conserve long-term of Maaeyeoraejwasang.

Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the Yeongnam Massif (영남육괴 함양, 거창 및 영주 화강암-화강섬록암의 스핀 U-Pb 연대)

  • Park Kye-Hun;Lee Ho-Sun;Song Yong-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.39-48
    • /
    • 2006
  • U-Pb ages were determined from the granitic rocks from central and northeastern parts of Yeongnam massif. Porphyritic granite of Seosang-myeon, Hamyang-gun near the boundary with Anui-myeon shows age of $225.4{\pm}4.1Ma$. Foliated granodiorites of Anui-myeon, Hamyang-gun and Sinwon-myeon, Geochang-gun are $195.6{\pm}1.8Ma$ and $194.2{\pm}2.4Ma$ old respectively. Granites from Hari-myeon and Buksang-myeon of Geochang-gun show almost identical ages of $198.4{\pm}2.5Ma$ and $194.6{\pm}2.6Ma$ respectively, while foliated granodiorite of Yeongju shows an age ot $171.3{\pm}2.3Ma$. Combining with previously reported results, Triassic granitoids were emplaced almost identically at ca. 225 Ma throughout the areas of Hamyang and Sangju oi Yeongnam massif and Baengnok, Jeomchon and Goesan of Okcheon metamorphic belt. There were significant gap of non-magmatism before the resume of granitic activities over the large areas of Hamyang-gun, Geochang-gun, Gimcheon-si and Seongju-gun from Triassic-Jurassic boundary to early Jurassic, 200-194 Ma. Igneous activity within the Yeongnam massif of this period has not been reported from the Okcheon belt or Gyeonggi massif and may reflect distinct tectonic environment. Around 170 Ma, when Yeongju granodiorite was emplaced, there were active granitic magamtism throughout the Yeongnam massif, Okcheon belt and also Gyeonggi massif.

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea (정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대)

  • Jeong, Youn-Joong;Cheong, Chang-Sik;Park, Cheon-Young;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.