Norsesquiterpene and Steroid Constituents of Humulus japonicus

  • Yu, Byung-Chul (Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Yang, Min-Cheol (Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Kyu-Ha (Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Kim, Ki-Hyun (Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Kang-Ro (Natural Products Laboratory, College of Pharmacy, Sungkyunkwan University)
  • Published : 2007.12.31

Abstract

Five steroids and two norsesquiterpene glycosides were isolated from the methanol extract of H. japonicus. Their structures were determined by means of physio-chemical and spectral data to be friedelin (1), stigmast-5-en-3-${\beta}$-ol (${\beta}$-sitosterol) (2), 7-keto-${\beta}$-sitosterol (3), 6${\beta}$-hydroxy-4-stigmasten-3-one (4), 7${\alpha}$-hydroxy-${\beta}$-sitosterol (5), 3-hydroxy-4,4-dimethyl-4-butyrolactone (6), daucosterol (7), (6S, 9S)-roseoside (8), and (9S)-drummondol-9-O-${\beta}$-D-glucopyranoside (spinoside B) (9). The compounds 1, 3, 4, and 6 - 9 were first isolated from this plant source.

Keywords

References

  1. Achenbach, H. and Lowel, M., Constituents of Isolona maitlandii. Phytochemistry 40, 967-973 (1995) https://doi.org/10.1016/0031-9422(95)00333-3
  2. Ahmed, A.A., Hussein, T.A., Mahmoud, A.A., Farag, M.A., Pare, P.W., Wojcinska, M., Karchesy, J., and Mabry, T.J., Nor-ent-kaurane diterpenes and hydroxylactones from Antennaria geyeri and Anaphalis margaritacea. Phytochemistry 65, 2539-2543 (2004) https://doi.org/10.1016/j.phytochem.2004.08.002
  3. Arai, Y., Nakagawa, T., Hitosugi, M., Shiojima, K., Ageta, H., and Abdel- Halim, O.B., Chemical constituents of aquatic fern Azolla nilotica. Phytochemistry 48, 471-474 (1998) https://doi.org/10.1016/S0031-9422(97)01126-6
  4. Aritomi, M., Chemical constituents in leaves of Humulus japonicus. Yakugaku Zassi 82, 1331-1332 (1962) https://doi.org/10.1248/yakushi1947.82.9_1331
  5. Calis, I., Kuruuzum-U., A., Lorenzetto, P.A., and Ruedi, P., (6S)- Hydroxy-3-oxo-$\alpha$-ionol glucosides from Capparis spinosa fruits. Phytochemistry 59, 451-457 (2002) https://doi.org/10.1016/S0031-9422(01)00399-5
  6. Champavier, Y., Comte, G., Vercauteren, J., Allais, D.P., and Chulia, A.J., Norterpenoid and sesquiterpenoid glucoside from Juniperus phoenicea and Galega officinalis. Phytochemistry 50, 1219-1223 (1999) https://doi.org/10.1016/S0031-9422(98)00697-9
  7. Cheng, Y., Zhou, J., Deng, S., and Tan, N.H., New norsesquiterpenoids from Cucubalus baccifer. Planta Med. 68, 91-94 (2002) https://doi.org/10.1055/s-2002-20054
  8. Della G.M., Monaco, P., and Previtera, L., Stigmasterols from Typha latifolia. J. Nat. Prod. 53, 1430-1435 (1990) https://doi.org/10.1021/np50072a005
  9. Kim, J.S., Kim, J.C., Shim, S.H., Lee, E.J., Jin, W.Y., Bae, K.H., Son, K.H., Kim, H.P., Kang, S.S., and Chang, H.W., Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharm. Res. 29, 617-623 (2006) https://doi.org/10.1007/BF02968244
  10. Klass, J., Tinto, W.F., McLean, S., and Reynolds, W.F., Friedelane triterpenoids from Peritassa compata: complete $^1H$ and $^{13}C$ assignments by 2D NMR spectroscopy. J. Nat. Prod. 55, 1626-1630 (1992) https://doi.org/10.1021/np50089a010
  11. Lee, I.S., Jin, W., Zhang, X., Hung, T.M., Song, K.S., Seong, Y.H., and Bae, K.H., Cytotoxic and COX-2 inhibitory constituents from the aerial parts of Aralia cordata. Arch. Pharm. Res. 29, 548-555 (2006) https://doi.org/10.1007/BF02969263
  12. Mahato, S.B. and Kundu, A.P., $^{13}C$ NMR spectra of pentacyclic triterpenoids-a compilation and some salient features. Phytochemistry 37, 1517-1575 (1994) https://doi.org/10.1016/S0031-9422(00)89569-2
  13. Naya, Y. and Kotake, M., Constituents of hops. V. volatile composition of Humulus japonicus. Bull. Chem. Society Japan 43, 3594-3596 (1970) https://doi.org/10.1246/bcsj.43.3594
  14. Park, S.W., Woo, C.J., Chung, S.K., and Chung, K.T., Antimicrobial and antioxidative activities of solvent fraction from Humulus japonicus. Kor. J. Food. Sci. Technol. 26, 464-470 (1994)
  15. Park, S.W., Kim, S.H., and Chung, S.K., Antimutagenic effects and isolation of flavonoids from Humulus japonicus., Kor. J. Food. Sci. Technol. 27, 879-901 (1995)
  16. Yamano Y. and Ito M., Synthesis of optically active vomifoliol and roseoside stereoisomers., Chem. Pharm. Bull. 53, 541-546 (2005) https://doi.org/10.1248/cpb.53.541
  17. Yu, B.C., Yang, M.C., Lee, K.H., Kim, K.H., Choi, S.U., and Lee, K.R., Two new phenolic constituents of Humulus japonicus and their cytotoxicity test in vitro., Arch. Pharm. Res. 30, 1471-1475 (2007) https://doi.org/10.1007/BF02977373
  18. Yokosuka, A., Mimaki, Y., Sakuma, C., and Sashida, Y., New glycoside of the campesterol derivative from the rhizomes of Tacca chantrieri. Steroids 70, 257-265 (2005) https://doi.org/10.1016/j.steroids.2004.11.006
  19. Zhao, C.C., Shao, J.H., Li, X., Xu, J., and Zhang, P., Antimicrobial constituents from fruits of Ailanthus altissima Swingle. Arch. Pharm. Res. 28, 1147-1151 (2005) https://doi.org/10.1007/BF02972977