Epoxy Planarization Films for the Stainless Steel Substrates for Flexible Displays

플렉시블 디스플레이용 Stainless Steel 기판의 에폭시 평탄막 연구

  • Hong, Yong-Teak (Department of Electrical Engineering and Computer Science, Seoul National University) ;
  • Jung, Seung-Joon (Department of Electrical Engineering and Computer Science, Seoul National University) ;
  • Choi, Ji-Won (Department of Chemical Engineering, Kyung Hee University)
  • 홍용택 (서울대학교 전기컴퓨터 공학부) ;
  • 정승준 (서울대학교 전기컴퓨터 공학부) ;
  • 최지원 (경희대학교 환경응용화학대학 화학공학.영상정보소재기술연구센터)
  • Published : 2007.11.30

Abstract

This paper reports the first results of a series of planarization film study for the stainless steel (SS) substrates for flexible displays. Diglycidyl ether of bisphenol A (DGEBA) and octa(dimethylsiloxypropylglycidylether) silsesquioxane (OG) were chosen for the organic and the hybrid epoxies respectively and diaminodiphenylmethane (DDM) was used as a curing agent at 1:2 stoichiometric ratio. These materials were spin-coated on SS substrates and thermal-cured. TGA study indicated that both the pristine and the cured OG were more thermally stable than DGEBA. AFM study showed that the smooth surfaces of $1{\sim}2\;nm$ roughness can be prepared for both DGEBA and OG when the films were thick ($>\;1\;{\mu}$). The electrical properties such as dielectric constant, capacitance and the leakage current with respect to the applied voltage were all stable even after the stress of $100\;V/100^{\circ}C$ was applied for $0{\sim}10000$ seconds indicating that the insulating properties of DGEBA and OG films were very reliable.

본 논문은 플렉시블 디스플레이용 stainless steel(SS) 기판의 평탄막 재료로서 유기 및 유기/무기 하이브리드 에폭시 레진을 연구한 첫 결과를 보고한다. 유기 에폭시로는 diglycidyl ether of bisphenol A(DGEBA)를, 하이브리드 에폭시는 실세스퀴옥산이 포함된 octa(dimethylsiloxypropylglycidylether) silsesquioxane(OG)를 선택하였다. 경화제로는 diaminodiphenylmethane(DDM)을 에폭시와 1 : 2 당량비로 사용하였으며 두 물질 모두 SS 기판위에 어려움 없이 코팅이 되었다. TGA로 살펴본 열 안정성 분석은 순수한 물질이나 경화된 필름이나 모두 OG가 DGEBA 보다 안정하며 AFM에 의한 필름 표면의 관찰은 필름이 충분히 두꺼운 경우$(>\;1\;{\mu})\;1{\sim}2\;nm$ 정도의 표면 거칠기 값을 갖는 평탄한 면이 얻어진다는 것을 보여주었다. 또 이 필름들은 $0{\sim}10000$ 초에 걸치는 시간 동안 100 V와 $100^{\circ}C$의 외부 스트레스를 받은 후에도 일정한 유전 상수(${\sim}3.5$), 정전 용량 및 전류의 흐름을 나타내 절연 특성이 안정되어 있다는 것을 알 수 있었다.

Keywords

References

  1. D. M. Mofatt, MRS Bulletin, 21, 31 (1996)
  2. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature, 357,477 (1992)
  3. A. J. Heeger and J. Long Jr., Opt. Photon. News, 7, 23 (1996)
  4. G. Gu, P. E. Burrows, S. Venkatesh, and S. R. Forrest, Opt. Lett., 22, 172 (1992)
  5. P. M. Smith, P. G. Carey, and T. W. Sigmon, Appl. Phys. Lett., 70, 342 (1997)
  6. M. Wu, X. Bo, J. C. Sturm, and S. Wagner, IEEE T. Electron. Dev., 49, 1993 (2002)
  7. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett., 75, 2244 (1999)
  8. T. Serikawa and F. Ornata, IEEE Electr. Device L., 20, 574 (1999)
  9. R. S. Howell, M. Stewart, S. V. Karnik, S. K. Saha, and M. Hatalis, IEEE Electr. Device L., 21, 70 (2000)
  10. T. Afentakis, M. Gatalis, A. T. Voutsas, and J. Hartzell, IEEE T. Electron. Dev., 53, 815 (2006) https://doi.org/10.1109/TED.2006.871174
  11. C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Strum, S. Wagner, and S. R. Forrest, IEEE Electr. Device L., 18, 609 (1997)
  12. D. Jin, J. Jeong, H. Shin, M. Kim, T. Ahn, S. Kwon, J. Kwack, T. Kim, Y. Mo, and H. Chung, SID 06 DIGEST, 1855 (2006)
  13. J. Cheon, J. Choi, J. Hun, and J. Jang, IEEE T. Electron. Dev., 53, 1273 (2006) https://doi.org/10.1109/TED.2006.871873
  14. A. Chwang, R. Hewitt, K. Urbanik, J. Silvernail, K. Raian, and M. Hack, SID 06 DIGEST, 1858 (2006)
  15. J. Chang, J. Wu, C. Huang, Y. Chen, L. Wang, Y. Luo, I. Peng, T. Wong, M. Wang, and J. Chang, Euro Display, 133 (2005)
  16. F. Templier, B. Aventurier, M. Moreau, A. Mortillaro, R. Ternplier, and A. Passero, EuroDisplay, 414 (2005)
  17. S. D. Theiss and S. Wagner, IEEE Electr. Device L., 17, 578 (1996)
  18. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett., 74, 1177 (1999)
  19. T. Chang, P. Liu, T. Tasi, F. Yeh, T. Tseng, M. Tsai, B. Chen, Y. Yang, and S. Sze, Jpn. J. Appl. Phys., 40, 3143 (2001) https://doi.org/10.1143/JJAP.40.1
  20. C. Maddalon, K. Barla, E. Denis, E. Lous, E. Perrin, S. Lis, C. Lair, and E. Dehan, Microelectron. Eng., 50, 33 (2000)
  21. T. Chang, T. Chang, P. Liu, T. Chang, and F. Yeh, Thin Solids Films, 498, 70 (2006) https://doi.org/10.1016/j.tsf.2005.07.068
  22. P. Liu, T. Chang, M. Huang, Y. Yang, Y. Mor, M. S. Tsai, H. Chung, J. Hou, and S. M. Sze, J. Electrochem. Soc., 147, 4313 (2000)
  23. H. Lee, C. L. Soles, D. W. Liu, B. J. Bauer, E. K. Lin, and W. L. Wu, J. Appl. Phys., 95, 2355 (2004) https://doi.org/10.1063/1.1641955
  24. A. Sellinger and R. M. Laine, Chem. Mater., 8, 1592 (1996)
  25. J. Choi, J. Hareup, A. F. Yee, Q. Zhu, and R. M. Laine, J. Am. Chem. Soc., 123,11420 (2001) https://doi.org/10.1021/ja002793v
  26. A. Boudefel and P. Gonon, J. Mater. Sci: Mater. Electron., 17, 205 (2006) https://doi.org/10.1007/s10854-006-6762-2
  27. L. Zong, S. Zhou, N. Sgriccia, and M. C. Hawley, Polym. Eng. Sci, 45, 1576 (2005) https://doi.org/10.1002/pen.20345
  28. R. Schwodiauer, G. S. Neugschwandtner, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. Lett., 75, 3998 (1999)
  29. R. Sehwodiauer, G. S. Neugschwandtner, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. Lett., 76, 2612 (2000)