DOI QR코드

DOI QR Code

연안 갯벌에서 분리한 Chloroaniline 화합물 분해 미생물의 특징

Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment

  • Kang, Min-Seung (Department of Food Science & Technology, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science & Technology, Pukyong National University)
  • 발행 : 2007.10.31

초록

Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.

키워드

참고문헌

  1. Aoki, K., K. Konohana, R. Shinke and H. Nishira. 1984. Purification and characterization of catechol 1,2dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Agric. BioI. Chem., 48, 2087-2095 https://doi.org/10.1271/bbb1961.48.2087
  2. Berns, K.I. and C.A. Thomas. 1965. Isolation of the high molecular DNA from Haemophilus influenzae. J. Mol. BioI., 11, 476-490 https://doi.org/10.1016/S0022-2836(65)80004-3
  3. Choi, J.H., T.K. Kim, Y.M. Kim, W.C. Kim, G.J. Joo, K.Y. Lee, and I.K. Rhee. 2005. Cloning and cgaracterization of a short chain alcohol dehydrogenase gene for cyclohexanol oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol., 15, 1186-1196
  4. Dunbar, J., L.O. Ticknor and C.R. Kuske. 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66, 2943-2950 https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  5. Gheewala, S.H. and A.P. Annachhatre. 1997. Biodegradation of aniline. Water Sci. Technol., 36, 53-63
  6. Harayama, S. and M. Rekik. 1990. The mata clevage operon of TOL degradative plasmid pWWO comprised 13 gene. Mol. Gen. Genet., 221, 113-120 https://doi.org/10.1007/BF00280375
  7. Hofer, B., S. Backhaus and K.N. Timmis. 1994. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB4000 encodes four additional metabolic enzymes. Gene, 144, 9-16 https://doi.org/10.1016/0378-1119(94)90196-1
  8. Kearny, P.C. and D.D. Kaufman. 1975. In: Herbicides: Chemistry, Degradation and Mode of Action, Marcel Dekker, New York
  9. Kim, Y.M., K. Park, GJ. Joo, E.M. Jeong, J.E. Kim and I.K. Rhee. 2004. Glutathione-dependent biotransformation of the fungicide chlorothalonil. J. Agric. Food Chem., 52, 4192-4196 https://doi.org/10.1021/jf040047u
  10. Lee, J.S., E.J. Kang, M.O. Kim, D.H. Lee, K.S. Bae and C.K. Kim. 2001. Identification of Yarrowia lipolytica Y 103 and its degradability of phenol and 4-chlorophenol. J. Microbiol. Biotechnol., 11, 112-117
  11. Liu, Z., H. Yang, Z. Huang, P. Zhou and S.J. Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol., 58, 679-682 https://doi.org/10.1007/s00253-002-0933-8
  12. Motonaga, K., K. Tagagi and S. Matumoto. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. BioI. Fertil. Soils., 23, 340-345 https://doi.org/10.1007/BF00335964
  13. Na, K., S. Kim, M. Kubo and S. Chung. 2001. Cloning and phylogenetic analysis of two diferent bphC genes and bphD gene from PCB-degrading bacterium, Pseudomonas sp. strain SY5. J. Microbiol. Biotechnol., 11, 668-676
  14. Nakanishi, Y., S. Murakami, R. Shinke and K. Aoki. 1991. Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK-8-2. Agric. BioI. Chem., 55, 1281-1289 https://doi.org/10.1271/bbb1961.55.1281
  15. Park, D.W., J.H. Lee, D.H. Lee, K. Lee and C.K. Kim. 2003. Sequence characteristics of xyl JQK genes reponsible for catechol degradation in benzoatecatabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol., 13, 700-705
  16. Radianingtyas, H., G.K. Robinson and A.T. Bull. 2003. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology, 149, 3279-328 https://doi.org/10.1099/mic.0.26303-0
  17. Tixier, C., M. Sancelme, S. Ait-Aissa, F. Bonnemoy, A. Cuer, N. Truffaut and H. Veschambre. 2002. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere, 46, 519-526 https://doi.org/10.1016/S0045-6535(01)00193-X
  18. Travkin, V.M., I.P. Solyanikova, I.M. Rietjens, J. Vervoort, W.J. Berkel and L.A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J. Environ. Sci. Health, 38, 121-132 https://doi.org/10.1081/PFC-120018443

피인용 문헌

  1. Isolation of a Nonylphenol-degrading Microbial Consortium vol.44, pp.4, 2011, https://doi.org/10.5657/KFAS.2011.0325