DOI QR코드

DOI QR Code

Structure Effects on Organic Thin-Film Transistor Properties of Dinaphthyl Substituted Pentacene Derivatives

  • Son, Ji-Hee (Department of Chemistry/Display Research Center, The Catholic University of Korea) ;
  • Kang, In-Nam (Department of Chemistry/Display Research Center, The Catholic University of Korea) ;
  • Oh, Se-Young (Department of Chemical & Biomolecular Engineering/Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Park, Jong-Wook (Department of Chemistry/Display Research Center, The Catholic University of Korea)
  • Published : 2007.06.20

Abstract

Pentacene moiety has been widely studied in Organic Thin-Film Transistor (OTFT) device as a channel layer because of high carrier mobility. In this study, we have fabricated vertical type Organic Static Induction Transistors (SITs) using pentacene, 6,13-Dinaphthalen-1-ly-Pentacene (1-DNP, 3), and 6,13-Dinaphthalen-2- ly-Pentacene (2-DNP, 4). 1-DNP and 2-DNP have same naphtyl group with pentacene, but different linked position and spatial arrangement. We have checked the static characteristics of materials in vertical type SITs device. We found that pentacene has as on/off ratio of 14.56, 1-DNP and 2-DNP shows as on/off ratio of 36.58 and 6.61 at VDS = 2V in SIT, respectively.

Keywords

References

  1. Ling, M. M.; Bao, Z. Chem. Mater. 2004, 16, 4824 https://doi.org/10.1021/cm0496117
  2. Tanaka, S.; Yanagisawa, H.; Iizuka, M.; Nakaamura, M.; Kudo K. Electrical Engineering in Japan 2003, 149, 853
  3. Garnier, F.; Horowitz, G.; Fichou, D.; Yassar, A. Synth. Met. 1996, 821, 163
  4. Klauk, H.; Gundlach, D. J.; Jackson, T. N. IEEE Elecrton Device Lett. 1999, 20, 289 https://doi.org/10.1109/55.767101
  5. Oh, S. Y.; Lee, J. Y. Mol. Cryst. Liq. Cryst. 2006, 444, 211 https://doi.org/10.1080/15421400500364980
  6. Choo, M. H.; Kim, J. H.; Im, S. I. Appl. Phys. Lett. 2002, 81, 24
  7. Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hedge, S.; Purushothaman, S. Synth. Met. 1998, 92, 47 https://doi.org/10.1016/S0379-6779(98)80021-0
  8. Abthagir, P. S.; Ha, Y. G.; You, E. A.; Jeong, S. H.; Seo, H. S.; Choi, J. H. J. Phys, Chem. B 2005, 109, 50
  9. Iechi, H.; Sakai, M.; Nakamura, K.; Iizuka, M.; Nakamura, M.; Kudo, K. Synth. Met. 2005, 154, 149 https://doi.org/10.1016/j.synthmet.2005.07.038
  10. Kim, Y. E.; Park, J. W. Mol. Cryst. Liq. Cryst. 2006, 444, 137 https://doi.org/10.1080/15421400500365318
  11. Picciolo, L. C.; Murate, H.; Kafafi, Z. H. Appl. Phys. Lett. 2001, 78, 2378 https://doi.org/10.1063/1.1362259
  12. Wolak, M. A.; Jang, B. B.; Palilis, L. C.; Kafafi, Z. H. J. Phys. Chem. B 2004, 108, 5492 https://doi.org/10.1021/jp036199u

Cited by

  1. Oligomers and Polymers Based on Pentacene Building Blocks vol.3, pp.4, 2010, https://doi.org/10.3390/ma3042772
  2. Synthesis and properties of phenothiazylene vinylene-based polymers: New organic semiconductors for field-effect transistors and solar cells vol.48, pp.3, 2010, https://doi.org/10.1002/pola.23814
  3. Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.1945
  4. Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2371
  5. Simulation of top-contact pentacene thin film transistor vol.8, pp.1, 2007, https://doi.org/10.1007/s10825-009-0265-3