DOI QR코드

DOI QR Code

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin (Department of Chemistry and Nano Fine Center, Inha University) ;
  • Kang, Gyoung-Won (Department of Chemistry and Nano Fine Center, Inha University) ;
  • Park, Seong-Tae (Department of Chemistry and Nano Fine Center, Inha University) ;
  • Moon, Myeong-Hee (Department of Chemistry, Yonsei University) ;
  • Park, Jung-Hag (Department of Chemistry, Yeungnam University) ;
  • Cheong, Won-Jo (Department of Chemistry and Nano Fine Center, Inha University)
  • Published : 2007.06.20

Abstract

Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

Keywords

References

  1. Okamoto, Y.; Yashima, E. Angew. Chem. Int. Ed. 1998, 37, 1020- 1043 https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5
  2. Yamamoto, C.; Okamoto, Y. Bull. Chem. Soc. Jpn. 2004, 77, 227- 257 https://doi.org/10.1246/bcsj.77.227
  3. Minguillon, C.; Franco, P.; Oliveros, L.; Lopez, P. J. Chromatogr. A 1996, 728, 407-414 https://doi.org/10.1016/0021-9673(95)01123-4
  4. Minguillon, C.; Franco, P.; Oliveros, L. J. Chromatogr. A 1996, 728, 415-422 https://doi.org/10.1016/0021-9673(95)01203-6
  5. Oliveros, L.; Senso, A.; Minguillon, C. Chirality 1997, 9, 145- 149 https://doi.org/10.1002/(SICI)1520-636X(1997)9:2<145::AID-CHIR12>3.0.CO;2-N
  6. Kubota, T.; Yamamoto, C.; Okamoto, Y. Chirality 2003, 15, 77- 82 https://doi.org/10.1002/chir.10169
  7. Kubota, T.; Yamamoto, C.; Okamoto, Y. J. Polym. Sci. Pt A Polym. Chem. 2004, 42, 4704-4710 https://doi.org/10.1002/pola.20372
  8. Kubota, T.; Yamamoto, C.; Okamoto, Y. J. Polym. Sci. Pt A Polym. Chem. 2003, 41, 3703-3712 https://doi.org/10.1002/pola.10836
  9. Chen, X.; Qin, F.; Liu, Y.; Huang, X.; Zou, H. J. Chromatogr. A 2004, 1034, 109-116 https://doi.org/10.1016/j.chroma.2004.02.007
  10. Silva, R. B.; Gushikem, Y.; Collins, C. H. J. Sep. Sci. 2001, 24, 49-54 https://doi.org/10.1002/1615-9314(20010101)24:1<49::AID-JSSC49>3.0.CO;2-0
  11. Silva, C. R.; Airoldi, C.; Collins, K. E.; Collins, C. H. J. Chromatogr. A 2005, 1073, 155-162 https://doi.org/10.1016/j.chroma.2004.09.019
  12. Silva, C. R.; Airoldi, C.; Collins, K. E.; Collins, C. H. J. Chromatogr. A 2005, 1087, 29-37 https://doi.org/10.1016/j.chroma.2005.03.113
  13. Silva, R. B.; Collins, C. H. J. Chromatogr. A 1999, 845, 417-422
  14. Morais, L. S.; Jardim, I. C. J. Chromatogr. A 2005, 1073, 127- 135 https://doi.org/10.1016/j.chroma.2004.09.044
  15. Fonseca, D. A.; Collins, K. E.; Collins, C. H. J. Chromatogr. A 2004, 1030, 209-215 https://doi.org/10.1016/j.chroma.2003.11.035
  16. Melo, L. C.; Jardim, I. C. J. Chromatogr. A, 1999, 845, 423
  17. Melo, L. F.; Collins, C. H.; Collins, K. E.; Jardim, I. C. J. Chromatogr. A 2000, 869, 129-135 https://doi.org/10.1016/S0021-9673(99)00864-X
  18. Pinto, C. M.; Collins, K. E.; Jardim, K. E. J. Liq. Chrom. & Rel. Technol. 2002, 25, 205-216 https://doi.org/10.1081/JLC-100108740
  19. Bachmann, S.; Melo, L. F.; Silva, R. B.; Anazawa, T. A.; Jardim, I. C. Chem. Mater. 2001, 13, 1874-1879 https://doi.org/10.1021/cm001179f
  20. Faria, A. M.; Magalhaes, D. R.; Collins, K. E.; Collins, C. H. Anal. Chim. Acta 2005, 550, 137-143 https://doi.org/10.1016/j.aca.2005.06.066
  21. Cheong, W. J.; Kang, G. W.; Lee, W. L.; Yoo, J.-S. J. Liq. Chrom. & Rel. Technol. 2002, 25, 1367-1378 https://doi.org/10.1081/JLC-120004752
  22. Cheong, W. J. Journal of Chromatography A 2005, 1066, 231- 237 https://doi.org/10.1016/j.chroma.2005.01.011
  23. Cheong, W. J.; Seo, Y. J.; Park, S. T.; Kang, G. W. Bull. Korean Chem. Soc. 2006, 27, 1059-1062 https://doi.org/10.5012/bkcs.2006.27.7.1059

Cited by

  1. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography vol.38, pp.17, 2015, https://doi.org/10.1002/jssc.201500465
  2. Disposable microcolumns with welded metal frits vol.39, pp.2, 2015, https://doi.org/10.1002/jssc.201501055
  3. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography vol.39, pp.10, 2016, https://doi.org/10.1002/jssc.201600040
  4. Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1941
  5. C18 Modified Monolith Silica Particles of 3-5 μm vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2281
  6. Preparation of Poly(styrene-divinylbenzene) Monolith Frits Encased in Common Polymer Tubing and Their Application in μLC vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1627
  7. Disposable Microcolumn with a Welded Metal Frit and a Silver Cement Frit vol.40, pp.6, 2019, https://doi.org/10.1002/bkcs.11710
  8. Polysaccharide-Based Chiral Stationary Phases on Gold Nanoparticles Modified Silica Beads for Liquid-Phase Separation of Enantiomers vol.58, pp.8, 2007, https://doi.org/10.1093/chromsci/bmaa042