DOI QR코드

DOI QR Code

Simultaneous Control of Au Nanotube Lengths and Pore Sizes with a Single Kind of Polycarbonate Membrane via Interfacial Deposition at the Air/Water Interface

  • Pyo, Myoung-Ho (Department of Chemistry, Sunchon National University) ;
  • Joo, Jung-Sook (Department of Chemistry, Sunchon National University) ;
  • Jung, Youn-Su (Department of Chemistry, Sunchon National University)
  • Published : 2007.08.20

Abstract

Au was electrolessly deposited on polycarbonate (PC) membranes (0.1 μm pores) at the air/water interface. It was found that the Au nanotube dimension can be controlled by adjusting the plating temperature and the solution composition. Interfacial deposition of Au at relatively low temperatures (4℃) produced long nanotubes, which run through the whole membrane thickness with small openings. Increase of plating temperatures resulted in the decrease of nanotube lengths and Au film thicknesses. It was also disclosed that the inside-diameter of Au nanotubes can be controlled with negligible variations in length by changing the composition of a plating solution.

Keywords

References

  1. Hernandez-Velez, M. Thin Solid Films 2006, 495, 51 https://doi.org/10.1016/j.tsf.2005.08.331
  2. Sung, D. D.; Choo, M. S.; Noh, J. S.; Chin, W. B.; Yang, W. S. Bull. Korean Chem. Soc. 2006, 27, 1159 https://doi.org/10.5012/bkcs.2006.27.8.1159
  3. Li, C. Bull. Korean Chem. Soc. 2006, 27, 991 https://doi.org/10.5012/bkcs.2006.27.7.991
  4. Hoa, M. L. K.; Lu, M.; Zhang, Y. Adv. Colloid Interface Sci. 2006, 121, 9 https://doi.org/10.1016/j.cis.2006.05.029
  5. Diaz, D. J.; Williamson, T. L.; Gua, X.; Sood, A.; Bohn, P. W. Thin Solid Films 2006, 514, 120 https://doi.org/10.1016/j.tsf.2006.02.098
  6. Harrell, C. C.; Lee, S. B.; Martin, C. R. Anal. Chem. 2003, 75, 6861 https://doi.org/10.1021/ac034602n
  7. Zhao, S.; Roberge, H.; Yelon, A.; Veres, T. J. Am. Chem. Soc. 2006, 128, 12352 https://doi.org/10.1021/ja062148+
  8. Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. J. Phys. Chem. B 2006, 110, 18424 https://doi.org/10.1021/jp0639849
  9. Nishizawa, M.; Menon, V. P.; Martin, C. R. Science 1995, 268, 700 https://doi.org/10.1126/science.268.5211.700
  10. Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M. J. Phys. Chem. B 2001, 105, 1925 https://doi.org/10.1021/jp003486e
  11. Gasparac, R.; Mitchell, D. T.; Martin, C. R. Electrochim. Acta 2004, 49, 847 https://doi.org/10.1016/j.electacta.2003.09.037
  12. Reynes, O.; Demoustier-Champagne, S. J. Electrochem. Soc. 2005, 152, D130 https://doi.org/10.1149/1.1997163
  13. Hoa, M. L. K.; Lu, M.; Zhang, Y. Adv. Coll. Interf. Sci. 2006, 121, 9 https://doi.org/10.1016/j.cis.2006.05.029
  14. Zhang, B. J.; Davis, S. A.; Mendelson, N. H.; Mann, S. Chem. Commun. 2000, 9, 781
  15. Park, S.; Lim, J.-H.; Chung, S.-W.; Mirkin, C. A. Science 2004, 303, 348 https://doi.org/10.1126/science.1093276
  16. Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920 https://doi.org/10.1021/ac00109a003
  17. Yamada, K.; Gasparac, R.; Martin, C. R. J. Electrochem. Soc. 2004, 151, E14 https://doi.org/10.1149/1.1629097
  18. Apel, P. Yu.; Blonskaya, I. V.; Dmitriev, S. N.; Orelovitch, O. L.; Sartowska, B. J. Membr. Sci. 2006, 282, 393 https://doi.org/10.1016/j.memsci.2006.05.045