DOI QR코드

DOI QR Code

Nickel-Catalyzed Hydrogenolysis of Arenesulfonates Using Secondary Alkyl Grignard Reagents

  • Kim, Chul-Bae (School of Chemical & Materials Engineering, Chung-Ang University) ;
  • Cho, Chul-Hee (School of Chemical & Materials Engineering, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical & Materials Engineering, Chung-Ang University)
  • Published : 2007.02.20

Abstract

Neopentyl arenesulfonates react with secondary alkylmagnesium chlorides in the presence of dppfNiCl2 to produce the corresponding arenes via the reductive cleavage of carbon-sulfur bond. Highest yield is obtained by using three equivalents of Grignard reagent to a mixture of arenesulfonate and dppfNiCl2 in Et2O at room temperature. This reaction represents a novel method allowing the efficient hydrogenolysis of sulfur-containing groups in aromatic compounds.

Keywords

References

  1. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.; de Meijere, A.; Backvall, J. E.; Cacchi, S.; Hayashi, T.; Ito, Y.; Kosugi, M.; Murahashi, S. I.; Oshima, K.; Yamamoto, Y., Eds.; Wiley-Interscience: New York, 2002
  2. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469 https://doi.org/10.1021/cr000664r
  3. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176-4211 https://doi.org/10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U
  4. Stanforth, S. P. Tetrahedron 1998, 54, 263-303 https://doi.org/10.1016/S0040-4020(97)10233-2
  5. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633-9695 https://doi.org/10.1016/S0040-4020(02)01188-2
  6. Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168 https://doi.org/10.1016/S0022-328X(98)01055-9
  7. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483 https://doi.org/10.1021/cr00039a007
  8. Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction; John Wiley & Sons: New York, 1998
  9. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1652
  10. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524 https://doi.org/10.1002/anie.198605081
  11. Negishi, E. In Organozinc Reagents: A Practical Approach, Knochel, P.; Jones, P., Eds.; Oxford University Press: Oxford, 1999; Chapter 11, pp 213-243
  12. Knochel, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54, 8275-8319 https://doi.org/10.1016/S0040-4020(98)00318-4
  13. Erdik, E. In Organozinc Reagents in Organic Synthesis; CRC Press: Boca Raton, 1996; Chapter 7, pp 271-343
  14. Negishi, E. Acc. Chem. Res. 1982, 15, 340-348 https://doi.org/10.1021/ar00083a001
  15. Sofia, A.; Karlstram, E.; Itami, K.; Backvall, J.-E. J. Org. Chem. 1999, 64, 1745-1749 https://doi.org/10.1021/jo982060h
  16. Busacca, C. A.; Eriksson, M. C.; Fiaschi, R. Tetrahedron Lett. 1999, 40, 3101-3104 https://doi.org/10.1016/S0040-4039(99)00439-6
  17. Miller, J. A.; Farrell, R. P. Tetrahedron Lett. 1998, 39, 7275-7278 https://doi.org/10.1016/S0040-4039(98)01587-1
  18. Tamao, K.; Kumada, M. In The Chemistry of the MetalCarbon Bond; Hartley, F. R., Ed.; Wiley: New York, 1987; Vol. 4, p 820
  19. Kumada, M. Pure Appl. Chem. 1980, 52, 669-679 https://doi.org/10.1351/pac198052030669
  20. Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958-1969 https://doi.org/10.1246/bcsj.49.1958
  21. Brase, S.; Kirchhoff, J. K.; Kobberling, J. Tetrahedron 2003, 59, 885-939 https://doi.org/10.1016/S0040-4020(02)01425-4
  22. Sammelson, R. E.; Kurth, M. J. Chem. Rev. 2001, 101, 137-202 https://doi.org/10.1021/cr000086e
  23. Franzen, R. Can. J. Chem. 2000, 78, 957-962 https://doi.org/10.1139/cjc-78-7-957
  24. Lorsbach, B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549-1581 https://doi.org/10.1021/cr970109y
  25. Andres, C. J.; Whitehouse, D. L.; Deshpande, M. S. Curr. Opin. Chem. Biol. 1998, 2, 353-362 https://doi.org/10.1016/S1367-5931(98)80009-4
  26. Deshpande, M. S. Tetrahedron Lett. 1994, 35, 5613-5614 https://doi.org/10.1016/S0040-4039(00)77260-1
  27. Yu, K.-L.; Deshpande, M. S.; Vyas, D. M. Tetrahedron Lett. 1994, 35, 8919-8922 https://doi.org/10.1016/0040-4039(94)88389-0
  28. Frenette, R.; Friesen, R. W. Tetrahedron Lett. 1994, 35, 9177-9180 https://doi.org/10.1016/0040-4039(94)88458-7
  29. Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046-6047 https://doi.org/10.1021/ja034908b
  30. Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484-1485 https://doi.org/10.1021/ja026758v
  31. Mayers, A. G.; Tanaka, D.; Mannion, K. R. J. Am. Chem. Soc. 2002, 124, 11250-11251 https://doi.org/10.1021/ja027523m
  32. Gooben, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2002, 41, 1237-1241 https://doi.org/10.1002/1521-3773(20020402)41:7<1237::AID-ANIE1237>3.0.CO;2-F
  33. Stephan, M. S.; Taunissen, A. J. J. M.; Verzijl, G. K. M.; de Vries, J. G. Angew. Chem. Int. Ed. 1998, 37, 662-664 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<662::AID-ANIE662>3.0.CO;2-0
  34. Wenkert, E.; Ferreira, T. W. J. Chem. Soc. Chem. Commun. 1982, 840-841
  35. Wenkert, E.; Ferreira, T. W.; Michealotti, E. L. J. Chem. Soc. Chem. Commun. 1979, 637-638
  36. Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 20, 43-46 https://doi.org/10.1016/S0040-4039(01)85876-7
  37. Milburn, R. R.; Snieckus, V. Angew. Chem. Int. Ed. 2004, 43, 888-891 https://doi.org/10.1002/anie.200352633
  38. Clayden, J.; Cooneym, J. J. A.; Julia, M. J. Chem. Soc Perkin Trans. 1 1995, 714
  39. Clayden, J.; Julia, M. J. Chem. Soc. Chem. Commun. 1993, 1682-1683
  40. Quesnelle, C.; Iihama, T.; Aubert, T.; Perrier, H.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2625-2628 https://doi.org/10.1016/S0040-4039(00)79042-3
  41. Iwao, M.; Iihama, T.; Mahalanabis, K. K.; Perrier, H.; Snieckus, V. J. Org. Chem. 1989, 54, 24-26 https://doi.org/10.1021/jo00262a012
  42. Cho, C.-H.; Sun, M.; Seo, Y.-S.; Kim, C.-B.; Park, K. J. Org. Chem. 2005, 70, 1482-1485 https://doi.org/10.1021/jo048300c
  43. Cho, C.-H.; Sun, M.; Park, K. Bull. Korean Chem. Soc. 2005, 26, 1410-1414 https://doi.org/10.5012/bkcs.2005.26.9.1410
  44. Cho, C.-H.; Yun, H.-S.; Park, K. J. Org. Chem. 2003, 68, 3017-3025 https://doi.org/10.1021/jo026449n
  45. Cho, C.-H.; Park, H.; Park, M.-A.; Ryoo, T.-Y.; Lee, Y.-S.; Park, K. Eur. J. Org. Chem. 2005, 3177-3181
  46. Cho, C.-H.; Kim, I.-S.; Park, K. Tetrahedron 2004, 60, 4589-4599 https://doi.org/10.1016/j.tet.2004.03.072
  47. Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79-85 https://doi.org/10.1021/jo0105787
  48. Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 1945-1947 https://doi.org/10.1002/1521-3773(20020603)41:11<1945::AID-ANIE1945>3.0.CO;2-7
  49. Dubner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233-9237 https://doi.org/10.1016/S0040-4039(00)01671-3
  50. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 1999, 38, 2411-2413 https://doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2411::AID-ANIE2411>3.0.CO;2-T
  51. Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223 https://doi.org/10.1021/ja025828v
  52. Seo, Y.-S.; Yun, H.-S.; Park, K. Bull. Korean Chem. Soc. 1999, 20, 1345-1347
  53. Kumada, M.; Tamao, K.; Sumitani, K. Org. Synth. Coll. Vol. 1988, 6, 407-411
  54. Morrell, D. G.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 7262-7270 https://doi.org/10.1021/ja00858a011
  55. Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376 https://doi.org/10.1021/ja00767a075
  56. Hayashi, T.; Konishi, M.; Yokota, K.-I.; Kumada, M. Chem. Lett. 1980, 767-768
  57. Node, M.; Nishide, K.; Shigeta, Y.; Obata, K.; Shiraki, H.; Kunishige, H. Tetrahedron 1997, 53, 12883-12894 https://doi.org/10.1016/S0040-4020(97)00804-1
  58. Hauptmann, H.; Walter, W. F. Chem. Rev. 1962, 62, 347-404
  59. Jung, K. W.; Zhao, X.-y.; Janda, K. D. Tetrahedron 1997, 53, 6645-6652 https://doi.org/10.1016/S0040-4020(97)00222-6
  60. Zhao, X.-y.; Jung, K. W.; Janda, K. D. Tetrahedron Lett. 1997, 38, 977-980 https://doi.org/10.1016/S0040-4039(96)02503-8
  61. Jung, K. W.; Zhao, X.-y.; Janda, K. D. Tetrahedron Lett. 1996, 37, 6491-6494 https://doi.org/10.1016/0040-4039(96)01419-0
  62. Sucholeiki, I. Tetrahedron Lett. 1994, 35, 7307-7310 https://doi.org/10.1016/0040-4039(94)85300-2
  63. Cho, C.-H.; Kim, C.-B.; Sun, M.; Park, K. Bull. Korean Chem. Soc. 2003, 24, 1632-1636 https://doi.org/10.5012/bkcs.2003.24.11.1632
  64. Rudie, A. W.; Lichtenberg, D. W.; Katcher, M. L.; Davison, A. Inorg. Chem. 1978, 17, 2859-2863 https://doi.org/10.1021/ic50188a035

Cited by

  1. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts vol.48, pp.56, 2012, https://doi.org/10.1039/c2cc31414b
  2. Strategies for Coupling Molecular Units if Subsequent Decoupling Is Required vol.113, pp.3, 2013, https://doi.org/10.1021/cr200338q
  3. Nickel-Catalyzed Hydrogenolysis of Arenesulfonates Using Secondary Alkyl Grignard Reagents. vol.38, pp.28, 2007, https://doi.org/10.1002/chin.200728089
  4. Nickel N-Heterocyclic Carbene Catalyst for Cross-Coupling of Neopentyl Arenesulfonates with Methyl and Primary Alkyl Grignard Reagents vol.74, pp.24, 2007, https://doi.org/10.1021/jo902151h
  5. Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates vol.31, pp.9, 2007, https://doi.org/10.5012/bkcs.2010.31.9.2459
  6. Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates vol.31, pp.9, 2007, https://doi.org/10.5012/bkcs.2010.31.9.2459
  7. Solid-Phase Synthesis of Unfunctionalized Arenes Via the Traceless Cleavage of Sulfonate Linkers vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3655