DOI QR코드

DOI QR Code

Effect of Grape Seed Water Extract on Lipid Metabolism and Erythrocyte Antioxidant Defense System in High-Fat Diet-Induced Obese C57BL/6 Mice

포도씨열수추출물이 고지방식이로 유도한 비만마우스의 지질대사와 적혈구 항산화 방어계에 미치는 영향

  • Cho, Young-Sook (Dept. of Food and Nutrition, Sunchon National University) ;
  • Jang, Eun-Mi (Dept. of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Jang, Sun-Mi (Dept. of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Chun, Mi-Sun (Dept. of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Shon, Mi-Yae (Dept. of Food Science and Nutrition, Gyeongsang National University) ;
  • Kim, Myung-Joo (Dept. of Food Science and Nutrition, Daegu Polytechnic College) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 조영숙 (순천대학교 식품과학부 식품영양학) ;
  • 장은미 (순천대학교 교육대학원 영양교육) ;
  • 장선미 (순천대학교 교육대학원 영양교육) ;
  • 천미선 (순천대학교 교육대학원 영양교육) ;
  • 손미예 (경상대학교 식품영양학과) ;
  • 김명주 (대구산업정보대학 식품영양과) ;
  • 이미경 (순천대학교 식품과학부 식품영양학)
  • Published : 2007.12.31

Abstract

This study was investigate the effect of grape seed water extract (GSW) on lipid profiles, lipid metabolism and erythrocyte antioxidant defense system in high-fat diet-induced obese mice. Three groups of male C57BL/6 mice were fed different diets for 6 weeks: normal diet (Normal), high-fat diet (HF control; 37% calorie from fat) and high-fat diet supplemented with GSW (HF-GSW; 1% wt/wt). Supplementation of GSW did not affect the body weight, food intake, daily energy intake, white adipose tissue weights and plasma leptin level in high-fat fed mice. Plasma and hepatic cholesterol and triglyceride contents were significantly higher in the HF control group than in the Normal group; however, GSW supplement significantly lowered plasma triglyceride and hepatic cholesterol concentrations compared to the HF control group. GSW supplement significantly increased fecal excretion of triglyceride in high-fat fed mice. Hepatic carnitine palmitoyl transferase activity was significantly higher in the HF-GSW group than in the HF control group, while fatty acid ${\beta}$-oxidation tended to be lowered by GSW supplement. Erythrocyte superoxide dismutase activity was also significantly higher in the HF-GSW group than in the HF control group and glutathione peroxidase activity tended to be lowered in HF-GSW group. The GSW supplement significantly lowered erythrocyte lipid peroxidation level compared to the HF control group. Accordingly, these results suggest that GSW can be considered as a lipid-lowering agent and as being effective for enhancing erythrocyte antioxidant defense system in high-fat diet-induced obese mice.

본 연구에서는 포도씨열수추출물을 이용하여 고지방식이로 비만을 유도한 마우스의 지질대사 및 적혈구의 항산화방어계에 미치는 영향을 살펴보았다. 4주령의 C57BL/6 마우스(n=24)를 1주일간 적응시킨 후 정상식이를 급여한 정상군, 고지방(열량의 37%를 지방으로 대체)을 급여한 고지방대조군과 고지방-포도씨열수추출물군으로 나누어 6주간 사육하였다. 포도씨열수추출물은 1%수준으로 식이에 첨가하였으며 동일한 열량, 질소량 및 섬유소가 함유되도록 조제하여 급여하였다. 고지방식이는 정상식이에 비하여 체중, 일일 열량섭취량, 백색지방 무게, 혈장과 간조직의 지질함량 및 혈장 leptin 함량을 유의적으로 증가시켰다. 본 실험에서 첨가된 식이 1%의 포도씨열수추출물 보충은 고지방을 급여한 마우스의 체중과 장기무게에는 영향을 미치지 않았으나, 혈장의 중성지질과 간조직의 콜레스테롤 함량을 현저히 저하하는 것으로 나타났다. 특히, 혈장 중의 중성지질은 포도씨열수추출군에서 정상수준으로 개선되었으며, 포도씨열수추출물은 변으로 중성지질 배설을 고지방대조군에 비하여 유의적으로 높였다. 간조직의 지질대사 효소인 FAS, ${\beta}$-oxidation, CPT 활성은 고지방대조군에서 정상군에 비하여 유의적으로 낮았으나 포도씨열수추출물군의 CPT 활성은 고지방대조군에 비하여 유의적으로 높았고, ${\beta}$-oxidation 활성도 증가경향을 보였다. 또한 적혈구의 SOD와 GSH-Px 활성이 포도씨열수추출물 급여시 활성화될 뿐만 아니라 고지방식이로 유도한 비만마우스의 적혈구내 지질과산화물 함량이 유의적으로 낮아졌다. 이와 같이 포도씨열수추출물은 고지방 섭취시 혈 중 지질개선 및 항산화제로서의 가능성을 제시하였다.

Keywords

References

  1. Teissedre PL, Frankel EN, Waterhouse Al, Peleg H, German JG. 1996. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grape and wines. J Sci Food Agric 70: 55-61 https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X
  2. Pekkarinen SS, Heinonen IM, Hopia AI. 1999. Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as an antioxidants in methyl lionleate. J Sci Food Agric 79: 499-506 https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499::AID-JSFA204>3.0.CO;2-U
  3. Van Jaarsveld H, Kuyl JM, Schulenburg DH, Wiid NM. 1996. Effect of flavonoids on the outcome of myocardial mitochondrial ischemia/reperfusion injury. Res Commun Mol Pathol Pharmacol 91: 65-75
  4. Caillet S, Salmieri S, Lacroix M. 2006. Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chem 95: 1-8 https://doi.org/10.1016/j.foodchem.2004.12.011
  5. Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A. 2004. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-senstive cell lines. Endocrinology 145: 4985-4990 https://doi.org/10.1210/en.2004-0764
  6. Bagchi D, Garg A, Krohn R, Bagchi M, Tran M, Stohs S. 1997. Oxygen free radical scavenging abilities of vitamin C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95: 179-190
  7. Yamakoshi J, Kataoka S, Koga T, Ariga T. 1999. Proanthocyanidin-rich extract from grape seed attenuates the development of arotic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142: 139-149 https://doi.org/10.1016/S0021-9150(98)00230-5
  8. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington DC
  9. Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc 58: 966-968 https://doi.org/10.1007/BF02659771
  10. American Institute of nutrition. 1977. Report of the American Institute of Nutrition Ad Hoc committee on standards for nutritional studies. J Nutr 107: 1340-1348 https://doi.org/10.1093/jn/107.7.1340
  11. Muller PH. 1977. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 15: 457-464
  12. Richmond V. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 22: 1579-1588
  13. Folch J, Mee L, Stanley GSH. 1975. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226: 497-509
  14. McCord JM, Fridovich I. 1969. Superoxide dismutase: An enzymatic function for erythrocuprein (Hemocuprein). J Biol Chem 244: 6049-6055
  15. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  16. Carl MN, Lakshmana MR, Porter JW. 1975. Fatty acid synthase from rat liver. Methods in Enzymology 35: 37-44 https://doi.org/10.1016/0076-6879(75)35136-7
  17. Lazarow PB. 1981. Assay of peroxisomal β-oxidation of fatty acids. Methods in Enzymology 72: 315-319 https://doi.org/10.1016/S0076-6879(81)72021-4
  18. Bieber LL, Abraham T, Helmrath T. 1972. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50: 509-518 https://doi.org/10.1016/0003-2697(72)90061-9
  19. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol & a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Aebi H. 1988. Catalase in vitro. Method Enzymol 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  21. Paglia ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 158-169
  22. Tarladgis BG, Pearson AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agri 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
  23. Dodge JA. 1994. Dietary fat and gastrointestinal function. Eur J Clin Nutr 48: S8-S16
  24. Katan MB, Zock PL, Mensink RP. 1994. Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 60: 1017S-1022S https://doi.org/10.1093/ajcn/60.6.1017S
  25. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. 2000. Central nervous system control of food intake. Nature 404: 661-667 https://doi.org/10.1038/35007534
  26. Shimoda H, Seki E, Aitani M. 2006. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6: 9-17 https://doi.org/10.1186/1472-6882-6-9
  27. Sies H. 1991. Oxidative stress: From basic research to clinical application. Am J Med 91: 353-359 https://doi.org/10.1016/0002-9343(91)90281-2
  28. Krinsky NI. 1992. Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 200: 248-254 https://doi.org/10.3181/00379727-200-43429
  29. Fridovich I. 1989. Superoxide dismutase. J Biol Chem 264: 7761-7764
  30. Zhu YG, Zhang SM, Wang JY, Xiao WQ, Wang XY, Zhou JF. 2006. Overweight and obesity-induced oxidative stress in children. Biomed Environ Sci 19: 353-359
  31. El-ALfy AT, Ahmed AE, Fatani AJ. 2005. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res 52: 264-270 https://doi.org/10.1016/j.phrs.2005.04.003

Cited by

  1. Fermented Crataegi fructus Vinegar Improves Lipid Metabolism in Rats Fed High Fat Diet vol.38, pp.8, 2009, https://doi.org/10.3746/jkfn.2009.38.8.1024
  2. Effect of Young Phragmites communis Leaves Powder on Lipid Metabolism and Erythrocyte Antioxidant Enzyme Activities in High-Fat Diet Fed Mice vol.39, pp.5, 2010, https://doi.org/10.3746/jkfn.2010.39.5.677
  3. Effects of Sinetrol-XPur on Leptin-Deficient Obese Mice and Activation of cAMP-Dependent UCP-2 vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.484
  4. Improvement Effect of Hyperlipidemia by Wild Haw (Crataegus pinnatifida BUNGE) vol.23, pp.5, 2014, https://doi.org/10.5322/JESI.2014.5.787
  5. Effects of the Red Garlic Extract for Anti-Obesity and Hypolipidemic in Obese Rats Induced High Fat Diet vol.21, pp.2, 2011, https://doi.org/10.5352/JLS.2011.21.2.211
  6. Effect of Dietary Grape Pomace on Lipid Metabolism and Hepatic Morphology in Rats Fed a High Fat Diet vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1595
  7. Effects of Dendropanax morbifera Leaf Extracts on Lipid Profiles in Mice Fed a High-Fat and High-Cholesterol Diet vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.641
  8. Biological Effect of Vaccinium uliginosum L. on STZ-induced Diabetes and Lipid Metabolism in Rats vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1727
  9. Anti-obesity Effects of African Mango (Irvingia gabonesis, IGOB 131TM) Extract in Leptin-deficient Obese Mice vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1477
  10. Lipolytic Effect of Sparassis crispa Extracts in Differentiated 3T3-L1 Cells and High Fat Diet-induced Obese Mice vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1708
  11. 비파엽추출물의 지방분해효소 조절을 통한 국소 지방분해 효능 vol.17, pp.2, 2017, https://doi.org/10.15429/jkomor.2017.17.2.101