DOI QR코드

DOI QR Code

Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy

Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성

  • Published : 2007.01.31

Abstract

A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

Keywords

References

  1. C. M. Joseph and C. S. Menon, 'Raman scattering in novel $AgInS_2$ crystals', Semicond. Sci. Technol., vol. 11, pp. 1668-1672, 1996 https://doi.org/10.1088/0268-1242/11/11/005
  2. C. Rincon, S. M. Wasim, S. Marin, G. Sanchez Perez, and G. Bacquet, 'Photoacoustic spectra of $AgInS_2$', New Physics. J. Appl. Phys., vol. 82, pp. 4500, 1997 https://doi.org/10.1063/1.366183
  3. M. Kanzari and B. Rezig, 'Band diagram of the polycrystalline CdS/$AgInS_2$ heterojunction', Semicond. Sci. Technol., vol. 15, pp. 335, 2000 https://doi.org/10.1088/0268-1242/15/4/306
  4. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, 'Electronic properties of $AgInS_2$-based heterojunction Solar cells. Part I. Transport analysis', Phys. Rev. B, vol. 5, pp. 5003, 1972 https://doi.org/10.1103/PhysRevB.5.5003
  5. J. L. Shay and H. M. Kasper, 'LED propeliies of $AgInS_2$ single crystal', J. Phys. Chem. Solids, Phys. Rev. Lett., vol. 29, pp. 1162, 1972
  6. J. E. Jaffe and A. Zunger, 'Photoluminescience and photocondutivity measurements on $AgInS_2$', Phys. Rev. B, vol. 29, pp. 1882, 1984 https://doi.org/10.1103/PhysRevA.29.1984
  7. N. V. Joshi, L. Martinez, and R. Echeverria, 'Study of the band edge in $AgInS_2$ by photovoltaic effect', J. Phys. & Chem. Solids, vol. 42, pp. 281, 1981
  8. J. L. Shay and J. H. Wernick, 'Ternary chalcopyrite semiconductors: Growth, electronic properties, and applications', Pergamon, Oxford, Chap. 4, 1975
  9. M. Gorska, R. Reaulieu, J. J. Loferski, and B. Roessler, 'Sturation photoconductivity in $AgInS_2$', Thin Solid Films, vol. 67, pp. 341, 1980
  10. K. Hattori, K. Akamatsu, and N. Kamegashira, 'Study of the band edge in $AgInS_2$ by photovoltaic effect', J. Appl. Phys., vol. 71, pp. 3414, 1992 https://doi.org/10.1063/1.350938
  11. A. Lopez-Otero, 'Sturation photoconductivity in $AgInS_2$ ', Thin Solid Films, vol. 49, pp. 3, 1987
  12. H. S. Kim, Dr. Thesis, Kwangju, Chosun University, 1998
  13. R. H. Photoconductivity of solids, Wiley, New York, p. 391, 1969
  14. J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, '$AgInS_2$ and $AgInS_2$ : Preparation and property of single crystal', Phys. Rev. B, vol. 9, pp. 1719, 1974
  15. K. Okamoto and K. Kinoshita, 'Tetragonal distortion for $A^I{\cdot}B^{Il}{\cdot}{C_2}^{III}$ chalcopyrite compounds', Solid-State Electron, vol. 19, pp. 31, 1976 https://doi.org/10.1016/0038-1101(76)90129-5
  16. R. A. Smitt, Semiconductor, 2nd edition, Cambridge University, Cambridge, p. 72, 1978
  17. Y. P. Varshni, 'Photoluminescience and photocondutivity measurements on $AgInS_2$', Physica, vol. 34, pp. 149, 1967
  18. N. S. Orlova, G. A. Turtsevich, and O. E. Kochkarik, 'Electron radition damage in cadium-selenide crystal at liquid-helium temperrature', Phys. Status. Solidi. A, vol. 118, pp. 141, 1990 https://doi.org/10.1002/pssa.2211180115
  19. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, 'Far-infrared optical absorption of $Fe^{2+}$ in ZnSe', Phys. Rev. B, vol. 7, pp. 4485, 1973 https://doi.org/10.1103/PhysRevB.7.4485
  20. B. Segall and D. T. F. Marple, In: M. Aven, J.S. Prener, edtors, Physics and chemistry of II-VI compounds, North-Holland, Amsterdam, Chap 7, p. 345, 1967
  21. K. J. Hong, 'Growth of ZnO thin film by pulsed laser depositin and photocurrent study on the splitting of valance band', J. of the Korean Sensors Society, vol. 14, no. 3, pp. 160-168, 2005 https://doi.org/10.5369/JSST.2005.14.3.160
  22. S. J. Youn and K. J. Hong, 'Optoelectrical properties of HgCdTe epilayers grown by hot wall epitaxy', J. of the Korean Sensors Society, vol. 13, no. 4, pp. 122-1126, 2004