References
- B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math., 15(1963), 239-341.
- F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc., 2(1951), 942-949. https://doi.org/10.1090/S0002-9939-1951-0045875-2
-
R. G. Buschman and H. M. Srivastava, The
$\overline{H}$ -function associated with a certain class of Feynman integrals, J. Phys. A : Math. Gen., 23(1990), 4707-4710. https://doi.org/10.1088/0305-4470/23/20/030 - A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw Hill, New York, (1953).
- C. Fox, The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
- I. S. Gradshteyin and I. M. Ryzhik, Table of integrals, Series and Products, 6/e, Academic Press, New Delhi (2001).
- K. C. Gupta and R. C. Soni, New properties of a generalization of hypergeometric series associated with Feynman integrals, Kyungpook Math. J., 41(1)(2001), 97-104.
- N. T. Hai and S. B. Yakubovich, The double Mellin-Barnes type integrals and their applications to convolution theory, World Scientific Publishing Co. Pvt. Ltd., Singapore, New Jersey, London, Hong Kong, (1992).
- A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: I. Transformation and reduction formulae, J. Phys. A : Math. Gen., 20(1987), 4109-4117. https://doi.org/10.1088/0305-4470/20/13/019
- A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: II. A generalisation of the H-function, J. Phys. A : Math. Gen., 20(1987), 4119-4128. https://doi.org/10.1088/0305-4470/20/13/020
- E. D. Rainville, Special Functions, Macmillan, New York ,(1960).
- A. K. Rathie, A new generalization of generalized hypergeometric functions, Matematiche( Catania), 52(1997), 297-310.
- H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
- H. M. Srivastava, K. C. Gupta and S. P. Goyal , The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, Madras,(1982).
- H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo Ser.2, 32(1983), 157-187. https://doi.org/10.1007/BF02844828
- G. Szego, Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. vol. 23, 4th Ed., Amer. Math. Soc., Providence, Rhode Island, (1975).