On Finite Integrals Involving Jacobi Polynomials and the $\bar{H}$-function

  • Sharma, Rajendra P. (Govt. Engineering College)
  • Received : 2002.12.05
  • Published : 2006.09.23

Abstract

In this paper, we first establish an interesting new finite integral whose integrand involves the product of a general class of polynomials introduced by Srivastava [13] and the generalized H-function ([9], [10]) having general argument. Next, we present five special cases of our main integral which are also quite general in nature and of interest by themselves. The first three integrals involve the product of $\bar{H}$-function with Jacobi polynomial, the product of two Jacobi polynomials and the product of two general binomial factors respectively. The fourth integral involves product of Jacobi polynomial and well known Fox's H-function and the last integral involves product of a Jacobi polynomial and 'g' function connected with a certain class of Feynman integral which may have practical applications.

Keywords

References

  1. B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math., 15(1963), 239-341.
  2. F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc., 2(1951), 942-949. https://doi.org/10.1090/S0002-9939-1951-0045875-2
  3. R. G. Buschman and H. M. Srivastava, The $\overline{H}$-function associated with a certain class of Feynman integrals, J. Phys. A : Math. Gen., 23(1990), 4707-4710. https://doi.org/10.1088/0305-4470/23/20/030
  4. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw Hill, New York, (1953).
  5. C. Fox, The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
  6. I. S. Gradshteyin and I. M. Ryzhik, Table of integrals, Series and Products, 6/e, Academic Press, New Delhi (2001).
  7. K. C. Gupta and R. C. Soni, New properties of a generalization of hypergeometric series associated with Feynman integrals, Kyungpook Math. J., 41(1)(2001), 97-104.
  8. N. T. Hai and S. B. Yakubovich, The double Mellin-Barnes type integrals and their applications to convolution theory, World Scientific Publishing Co. Pvt. Ltd., Singapore, New Jersey, London, Hong Kong, (1992).
  9. A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: I. Transformation and reduction formulae, J. Phys. A : Math. Gen., 20(1987), 4109-4117. https://doi.org/10.1088/0305-4470/20/13/019
  10. A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals: II. A generalisation of the H-function, J. Phys. A : Math. Gen., 20(1987), 4119-4128. https://doi.org/10.1088/0305-4470/20/13/020
  11. E. D. Rainville, Special Functions, Macmillan, New York ,(1960).
  12. A. K. Rathie, A new generalization of generalized hypergeometric functions, Matematiche( Catania), 52(1997), 297-310.
  13. H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
  14. H. M. Srivastava, K. C. Gupta and S. P. Goyal , The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, Madras,(1982).
  15. H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo Ser.2, 32(1983), 157-187. https://doi.org/10.1007/BF02844828
  16. G. Szego, Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. vol. 23, 4th Ed., Amer. Math. Soc., Providence, Rhode Island, (1975).