호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성

Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus

  • 고희선 (계명대학교 전통미생물개발 및 산업화연구센터) ;
  • 김현수 (계명대학교 전통미생물개발 및 산업화연구센터)
  • Ko Hee-Sun (Center for Traditional Microorganism Resources, Keimyung University) ;
  • Kim Hyun-Soo (Center for Traditional Microorganism Resources, Keimyung University)
  • 발행 : 2006.09.01

초록

본 균의 생육 및 효소생산에 유용한 탄소원으로서 자연계의 식물에 풍부한 펙틴을 탄소원으로 할 경우, 그 생육도는 전분보다 뛰어났으며, alcohol oxidase와 catalase의 생산량도 높아지는 것으로 나타났다. 특히 alcohol oxidase의 경우는 전분의 15배 이상의 생산량을 보여 본 균과 펙틴 이용성과의 관계를 시사하였고, 세포외 pectin esterase, pectinase등의 높은 활성이 검출되어 이를 증명하였다. 또한 alcohol oxidase 반응에서 생성되는 물질인 formaldehyde를 산화하는 formaldehyde dehydrogenase와, formate를 산화하여 $CO_2$를 생성하는 formate dehydrogenase의 반응을 발견하여, 본 균의 pectin 이용성과 관련한 일련의 에너지 대사계의 존재를 추정할 수 있었다.

Thermophillic fungus Thermoascus aurantiacus showed excellent growth and produced high amount of alcohol oxidase and catalase in a pectin medium. Besides, the strain produced enzymes which related with pectin or alcohol decomposition. We detected extracellular pectin esterase (EC 3.1.1.11) activity and, both intracellular and extracellular pectinase (EC 4.2.2.10) activity, as pectinolytic enzymes produced by T. aurantiacus. The production of methanol decomposition enzymes, such as alcohol oxidase (AOD, EC 1.1.3.13), alcohol dehydrogenase (ADH, EC 1.1.1.1), formaldehyde dehydrogenase (FADH, EC 1.2.1.1) and formate dehydrogenase (FDH, EC 1.2.1.2) follows by pectin esterase reaction which is converted to methanol. We concluded that T. aurantiacus has pectinolytic and alcohol - oxidative enzymological mechanism which produced carbon dioxide as a final material, started from pectin.

키워드

참고문헌

  1. Ohno, N., H. Fukuda, H. Wang, M. Kasamura, H. Shinoyama, and T. Fujii. 1998. Amylase produced by a thermophilc fungus, Thermoascus aurantiacus, and some of their properties. Seibutsu-kogaku 76: 113-119
  2. Khandke, K. M., P. J. Vithayathil and S. K. Murthy. 1989. Purification of xylanase, $\beta$-glucosidase, endocellulase, and exocellulase from a thermophilic fungus, Thermoascus aurantiacus. Arch. Biochem. Biophys. 274: 491-500 https://doi.org/10.1016/0003-9861(89)90462-1
  3. Yu, E. K. C., U. L. Tan, M. K. -H. Chan, L. Deschatelets, and N. S. John. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24 https://doi.org/10.1016/0141-0229(87)90044-5
  4. Wang, H., Y. Tokusige, H. Shinoyama, T. Fujii, and T. Urakami. 1998. Purification of characterization of a thermostable catalase from culture broth of Thermoascus aurantiacus. J. Ferment. Bioeng. 85: 169-173 https://doi.org/10.1016/S0922-338X(97)86762-1
  5. Ko, H., H. Fujiwara, Y. Yokoyama, N. Ohno, S. Amachi, H. Shinoyama, and T. Fujii. 2005. Inducible production of alcohol oxidase and catalase in a pectin medium by Thermoascus aurantiacus IFO 31693. J. Biosci. Bioeng. 99: 290-292 https://doi.org/10.1263/jbb.99.290
  6. Ko, H., Y. Yokoyama, N. Ohno, M. Okadome,S. Amachi, H. Shinoyama, and T. Fujii. 2005. Purification and characterization of intracellular and extracellular, thermostable and alkali-tolerant alcohol oxidases produced by a thermophilic fungus, Thermoascus aurantiacus NBRC 31693. J. Biosci. Bioeng. 99: 290-292 https://doi.org/10.1263/jbb.99.290
  7. Veenhuis, M., J. P. Van Dijken, and W. Harder. 1983. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts, pp. 2-82. In A.H. Rose, J. Gareth Morris, and D. W. Tempest (ed.), Advences in microbial physiology, vol. 24, Academic Press, London
  8. Fiedurekl, J. and A. Gromada. 1997. Screening and mutagenesis of molds for improvement of simultaneous production of catalase and glucose oxidase. Enzyme Microb. Technol. 20: 344-347 https://doi.org/10.1016/S0141-0229(96)00148-2
  9. Aebi, H. 1984. Catalase in vitro. Method Enzymol. 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  10. Klavons, J. A., R. D. Bennet. 1986. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J. Agric. Food Chem. 34: 597-599 https://doi.org/10.1021/jf00070a004
  11. Nash, T. 1953. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55: 416-421
  12. Fujii, T. and K. Tonomura. 1972. Oxidation of methanol, formaldehyde and formate by a Candida species. Agric. Biol. Chem. 36: 2297-2306
  13. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265