Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響)

  • 신용덕 (원광대학 전기전자 및 정보공학부) ;
  • 주진영 (원광대학 전기전자 및 정보공학부)
  • Published : 2006.09.01

Abstract

The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Keywords

References

  1. Da Chen, Xiao Feng Zhang and Robert O. Ritchie, 'Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide', J. Am. Ceram. Soc., 83[8], pp. 2079-2081, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01515.x
  2. D. Sciti, S. Guicciardi and A. Bellosi, 'Effect of Annealing Treatments on Microstructure and Mechanical Properties of Liquid-Phase-Sintered Silicon Carbide', Journal of the European Ceramic Society, 21. pp. 621-632, 2001 https://doi.org/10.1016/S0955-2219(00)00254-5
  3. Motzfeld, K., 'Silicon Carbide : Synthesis, Structure and Properties', In Proceedings of International Conference on Engineering Ceramics '92, ed InM. Haviar. Reproprint, Bratislava, pp. 7-42, 1993
  4. Y. D. Shin and J. Y. Ju 'Properties and Manufacture of the $beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering', Trans. KIEE. Vol. 48C[2], pp. 92-97, 1999
  5. Akira Kondo, 'Electrical Conduction Mechanism in Recrystallized SiC', Journal of the Ceramic Society of Japan. Int. Edition, Vol. 100, pp. 1204-1208, 1993
  6. Rong Huang, Hui Gu, Jingxian Zhang and Dongliang Jiang, 'Effect of $Y_2O_3-Al_2O_3$ Ratio on Inter-Granualar Phases and Films in Tape-Casting $alpha-SiC$ with High Toughness', Acta Materialia., 53[8], pp. 2521-2529, 2005 https://doi.org/10.1016/j.actamat.2004.10.055
  7. J. Forster, R. $Va{beta}en$, D. Stover, 'Improvement of Fracture Toughness in Hot Isostatically Pressed Mixtures of Ultrafine and Coarse-Grained SiC Ceramics', J. Mat. Sci. Lett., 14, pp. 214-216, 1995 https://doi.org/10.1007/BF00318261
  8. S. G. Lee and Y. W. Kim, 'Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics', J. Am. Ceram. Soc., 84[6], pp. 1347-1353, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00840.x
  9. Warren. J. Moberlychan and Lutgard. C. De Jonghe, 'Controlling Interface Chemistry and Structure to Process and Toughen Silicon Carbide', Acta Materialia., 46[7], pp. 2471-2477, 1998 https://doi.org/10.1016/S1359-6454(98)80030-X
  10. Nitin P. Padture and Brian R. Lawn, 'Toughness Properties of a silicon Carbide with an in Situ Induced Heterogeneous Grain Structure', J. Am. Ceram. Soc., 77[10], pp. 2518-2522, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  11. Joe J. Cao, Warren J. Moberlychan, Lutgard C. Dejonghe, Christopher J. Gilbert and Robert O. Ritchie, 'In Situ Toughened Silicon Carbide Al-B-C Additions', J. Am. Ceram. Soc., 79[2], pp. 461-469, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08145.x
  12. L. K. L. Falk, 'Microstructural Development during Liquid Phase Sintering of Silicon Carbide Ceramics', Journal of the European Ceramic Society, 17. pp. 983-994, 1997 https://doi.org/10.1016/S0955-2219(96)00198-7
  13. Diletta. Sciti, Cesare. Melandri and Alida Bellosi, 'Properties of $ZrB_2$-Reinforced Tenary Composites', Adanced Engineering Materials, 6[9], pp. 775-781, 2004 https://doi.org/10.1002/adem.200400039
  14. Mylene Brach, Diletta Sciti, Andrea Balbo and Alida Bellosi, 'Short-Term Oxidation of a Ternary Composite in the System $AlN-SiC-ZrB_2$', Journal of the European Ceramic Society, 25. pp. 1771-1780, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.12.007
  15. Cathleen Mroz, 'Zirconium Diboride', J. Am. Ceram. Soc., Bull., 74[6], pp. 164-165, 1995
  16. Frederic Monteverde and Alida Bellosi, 'Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed $ZrB_2$', Advanced Engineering Materials, 5[7], pp. 508-512, 2003 https://doi.org/10.1002/adem.200300349
  17. Y. D. Shin, J. Y. Ju and Ch. Hwang, 'Properties and Manufacture of ${\beta}-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(Ⅱ)', Trans. KlEE, Vol. 49C[2], pp. 92-97, 2000
  18. Guo-Dong Zhan, Rong- Jun Xie and Mamoru Mitomo, 'Effect of ${\beta}-to-{\alpha}$ Phase Transformation on the Microstructural Development and Mechanical Properties of Fine-Grained Silicon Carbide Ceramics', J. Am., Ceram. Soc., 84[5]. pp. 945-950, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00773.x
  19. J. H. She and K. Ueno., 'Densification Behavior and Mechanical Properties of Pressureless-Sintered Silicon Carbide Ceramics with Alumina and Yttria Additions', Materials Chemistry and Physics., 59, pp. 139-142, 1999 https://doi.org/10.1016/S0254-0584(99)00039-5
  20. D. Sciti and A. Bellosi, 'Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide', J. Mat. Sci. Lett., 35, pp, 3849-3855, 2000 https://doi.org/10.1023/A:1004881430804
  21. M. Nader, F. Aldinger and M. J. Hoffmann, 'Influence of the $alpha/beta$ Phase Transformation on Microstructural Development and Mechanical Properties of Liquid Phase Sintered Silicon Carbide', J. Mat. Sci., 34. pp. 1197-1204, 1999 https://doi.org/10.1023/A:1004552704872
  22. J. Y. Kim, Y. W. Kim, Mitomo, M., Zhan, G. D. and Lee, J. G., 'Microstructure and Mechanical Properties of ${\alpha}$-Silicon Carbide Sintered with Yttrium-Aluminum Garnet and Silica', J. Am. Ceram. Soc.,, 82[2], pp. 441-444, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01783.x
  23. Adam L. Chamberlain, William G. Fahrenholtz and Gregory E. Hilmas, 'High-Strength Zirconium Diboride-Based Ceramics', J. Am. Ceram. Soc.,, 87[6], pp. 1170-1172, 2004 https://doi.org/10.1111/j.1551-2916.2004.01170.x
  24. Kristoffer Krnel, Diletta Sciti, Elena Landi and Alida Bellosi, 'Surface Modification and Oxidation Kinetics of Hot-Pressed AlN-SiC-$MoSi_2$ Electroconductive Ceramic Composite', Applied Surface Science, 210. pp. 274-285, 2003 https://doi.org/10.1016/S0169-4332(03)00155-7
  25. Ken Takahashi and Ryutarao Jimbou., 'Effect of Uniformity on the Electrical Resistivity of SiC-$ZrB_2$ Ceramic Composites', J. Am. Ceram. Soc., 70[12], pp. C369-C373, 1987 https://doi.org/10.1111/j.1151-2916.1987.tb04922.x
  26. F. Monteverde and A. Bellosi, 'Oxidation of $ZrB_2$-Based Ceramics in Dry Air', Journal of The Electrochemical Society, 150(11). pp. B552-B559, 2003 https://doi.org/10.1149/1.1618226
  27. W. C. Tripp, H. H. Davis and H. C. Graham, 'Effect of an SiC Addition on the Oxidation of $ZrB_2$' J. Am. Ceram. Soc. Bull., 52[8], pp. 612-616, 1973
  28. Mark M. Opeka, Inna G. Talmy, Eric J. Wuchina, James A. Zaykoski and Samuel J. Causey, 'Mechanical Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds', Journal of the European Ceramic Society, 19. pp. 2405-2414, 1999 https://doi.org/10.1016/S0955-2219(99)00129-6
  29. Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, James D. Kiser, Mrityunjay Singh and Jonathan A. Salem, 'Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use', Journal of the European Ceramic Society, 22. pp. 2757-2767, 2002 https://doi.org/10.1016/S0955-2219(02)00140-1
  30. Y. D. Shin, J. Y. Ju and Ch. Hwang, 'The Properties of $beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$ Contents', Trans. KIEE Vol. 49C[9], pp. 516-521, 2000
  31. A. G. Evans and T. R. Wilshaw, 'Quasi-Static Solid Particle Damage in Brittle Solids-1. Observation Analysis and Implications', Acta Metallurgica. Vol. 24, pp. 939-956, 1976 https://doi.org/10.1016/0001-6160(76)90042-0
  32. Y. D. Shin 'Electric Discharge Machining of Hot-Pressed $SiC-ZrB_2$ Composites Ceramic', Trans. KIEE. Vol. 46[7], pp. 1062-1067, 1997
  33. Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, 'Effect of Initial $alpha$-Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide', J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  34. Y. W. Kim, M. Mitomo and H. Hirotsuru, 'Microstructure Development of Silicon Carbide Containing Large Seed Grains', J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  35. Jingxian Zhang, Rong Huang, Hui Gu, Dongliang Jiang, Qingling Lin and Zhengren Huang, 'High Toughness in Laminated SiC Ceramics from Aqueous tape Casting', Scripta Materialia., 52[5], pp. 381-385, 2005 https://doi.org/10.1016/j.scriptamat.2004.10.026
  36. Jaroslav L. Caslvsky and Dennis J. Viechnicki, 'Melting Behaviour and Metastability of Yttrium Aluminium Garnet(YAG) and $YAlO_3$ Determined by Optical Differential Thermal Analysis ', J. Mater Sci., 15, pp. 1709-1718, 1980 https://doi.org/10.1007/BF00550589
  37. Carl H. Mcmurtry, Wolfgang D. G. Boecker. Srinivasa G. Seshadri, Joseph S. Zanghi and John E. Garnier 'Microstructure and Material Properties of SiC-$TiB_2$ Particulate Composites', J. Am. Ceram. Soc. Bull., 66[2], pp. 325-329, 1987
  38. F. Monteverde, A. Bellosi and S. Guicciardi, 'Processing and Properties of Zirconium Diboride -based Composites', Journal of the European Ceramic Society, 22. pp. 279-288, 2002 https://doi.org/10.1016/S0955-2219(01)00284-9
  39. Oyelayo O. ajayi, Ali Erdemir, Richard H. Lee and Fred A. Nichols, 'Sliding Wear of Silicon Carbide-Titanium Boride Ceramic-Matrix Composite', J. Am. Ceram. Soc., 76[2], pp. 511-517, 1993 https://doi.org/10.1111/j.1151-2916.1993.tb03815.x
  40. J. B. Hurst and S. Dutta, 'Simple Processing Method for High-strength Silicon Carbide', J. Am. Ceram. Soc., 70[11]. pp. C303-C308, 1987 https://doi.org/10.1111/j.1151-2916.1987.tb05642.x
  41. Lee, J. K., Tanaka, H. and Kim, H., 'Movement of Liquid Phase and the Formation of Surface Reaction Layer on the Sintering of $beta$-SiC with an Additive of Yttrium Aluminium Garnet', J. Mat. Sci., 15. pp. 409-411, 1996 https://doi.org/10.1007/BF02396789
  42. Y. W. Kim, W. J. Kim and D. H. Cho, 'Effect of Additive Amount on Microstructure and Mechanical Properties of Self-reinforced Silicon Carbide', J. Mater. Sci. Lett.., 16. pp.1384-1386, 1997 https://doi.org/10.1023/A:1018544923812
  43. Kim, J. Y., Kim, Y. W., Lee, J. G., and Cho, K. S., 'Effect of Annealing on Mechanical Properties of Self-reinforced alpha-Silicon Carbide', J. Mat. Sci., 34. pp. 2325-2330, 1999 https://doi.org/10.1023/A:1004585910170
  44. Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, 'Influence of Hot Pressing Sintering Temperature and Time on Microstucture and mechanical Properties of $TiB_2$ Ceramics', Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002 https://doi.org/10.1016/S0955-2219(01)00424-1
  45. J. Ihle, M. Herrmann and J. Alder, 'Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part Ⅲ: Interaction between $Al_2O_3-Y_2O_3$ and SiC', Journal of the European Ceramic Society, 25, pp. 1005-1013, 2005 https://doi.org/10.1016/j.jeurceramsoc.2004.04.017
  46. ,Irene M. Peterson and Tseng Ying Tien, 'Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness of Silicon Nitride', J. Am. Ceram. Soc., 78[9], pp. 2345-2352, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08667.x
  47. Hui Gu, Takayuki Nagano, Guo-Dong Zhan, Mamoru Mitomo and Fumihiro Wakai, 'Dyanamic Evolution of Grain Boundary Films m Liquid-Phase-Sintered Ultrafine Silicon Carbide Material', J. Am. Ceram. Soc., 86[10], pp. 1753-1760, 2003 https://doi.org/10.1111/j.1151-2916.2003.tb03550.x
  48. C. Monticelli, F. Zucchi, A. Pagnoni and M. Dal Colle, 'Corrosion of a Zirconium/Silicon Carbide Composite in Aqueous Solutions', Electrochimica Acta, 50, pp. 3461-3469, 2005 https://doi.org/10.1016/j.electacta.2004.12.023
  49. Jow-Lay Huang and Jyh-Ming Jih, 'Investigation of SiC-AIN: Part Ⅱ, Mechanical Properties', J. Am. Ceram. Soc., 79[5], pp. 1262-1264, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb08582.x
  50. V. A. Izhevskyi, L. A. Genova, A. H. A. Bressiani and J. C. Bressiani, 'Microstructure and Properties Tailoring of Liquid-Phase Sintered SiC', International Journal of Refractory Metals & Hard Materials, 19. pp. 409-417, 2001 https://doi.org/10.1016/S0263-4368(01)00015-4
  51. Guo- Jun Zhang, Zhen-Yan Deng, Naoki Kondo, Jian-Feng Yang and Tatsuki Ohji, 'Reactive Hot Pressing of $ZrB_2$-SiC Composites', J. Am. Ceram. Soc., 83[9], pp. 2330-2332, 2000 https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  52. Neil N. Ault and John T. Crowe, 'Silicon Carbide', J. Am. Ceram. Soc., Bull., 74[6], pp. 150-151, 1995
  53. G. Rixecker, I. Wiedmann, A. Rosinue and F. Aldinger, 'High-Temperature effects in the Fracture Mechanical Behaviour of Silicon Carbide Liquid-Phase-Sintered with AlN-$Y_2O_3$ Additives', Journal of the European Ceramic Society, 21. pp. 1013-1019, 2001 https://doi.org/10.1016/S0955-2219(00)00317-4
  54. Y. D. Shin, J. Y. Ju, J. S. Kwon, 'Electrical Conductive Mechanism of Hot-pressed $alpha-SiC-ZrB_2$ Composites', Trans. KIEE, Vol. 48C[2], pp. 104-108, 1998