Changes in the Lung after Pulmonary Hypertension Induced by Obstruction of the Pulmonary Vein in Rats

흰쥐에서 폐정맥 폐쇄에 의해 유도된 폐동맥고혈압 발생 후의 폐장의 변화

  • Jang Won-Chae (Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School) ;
  • Jeong In-Suk (Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School) ;
  • Cho Kyu-Sung (Department of Plastic Surgery, Chonnam National University Medical School) ;
  • Oh Bong-Suk (Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School)
  • 장원채 (전남대학교 의과대학 흉부외과학교실) ;
  • 정인석 (전남대학교 의과대학 흉부외과학교실) ;
  • 조규성 (전남대학교 의과대학 성형외과학교실) ;
  • 오봉석 (전남대학교 의과대학 흉부외과학교실)
  • Published : 2006.09.01

Abstract

Background: Experimental studies of vascular remodeling in the pulmonary arteries have been performed actively. These models required a persistent vascular insult for intimal injury induced by chronic hypoxia, monocrotaline intoxication or chronic air embolism and characterized medial hypertrophy and neointimal formation by active synthesis of the extracellular matrix protein. The purpose of this study was to determine the pattern of pulmonary vascular remodeling after obstruction of the pulmonary vein. Material and Method: Obstruction of the right pulmonary vein with a metal clip was performed in Sprague-Dawley rats $(352{\pm}18g,\;n=10)$ to cause pulmonary vascular disease. Fifteen days later, experimental studies were done and finally the both lungs and hearts were extirpated for experimental measurement. Pulmonary arterial pressure, weight ratio of right ventricle (RV) to left ventricle (LV) and ventricular septum (S) (RV/LV +S weight ratio), and pulmonary artery morphology (percent wall thickness, %WT) were evaluated and compared with normal control groups. Result: Pulmonary hypertension $(38{\pm}12mmHg\;vs\;13{\pm}4mmHg;\;p<0.05)$ and right ventricular hypertrophy (right ventricular/left ventricular and septal weight ratio, $0.52{\pm}0.07\;vs\;0.35{\pm}0.04;\;p<0.05$) with hypertrophy of the muscular layer of the pulmonary arterial wall (percent wall thickness, $22.4{\pm}6.7%\;vs\;6.7{\pm}3.4%;\;p<0.05$) were developed by 15 days after obstruction of the pulmonary vein. Conclusion: Obstruction of the pulmonary vein developed elevation of pulmonary blood pressure and medial hypertrophy of the pulmonary artery. These results are a part of the characteristic vascular remodeling. Theses results demonstrate that obstruction of the pulmonary vein can develope not only high pulmoanry blood flow of contralateral lung but also intima injury inducing vascular remodeling.

배경: 저산소증, 공기색전증, monocrotaline 약물 주입 등에 의해 혈관 내막의 손상을 일으켜 폐동맥내세포외간질 단백질 합성을 활성화시키고 혈관의 중막비후나 신생내막의 형성을 일으키는 혈관개조(vascular remodeling) 실험이 활발하게 진행되고 있다. 본 연구는 폐정맥을 폐쇄시킨 후 변화된 혈류에 의해 폐장이 어떻게 반응하는지 확인하고자 동물실험을 실시하였다. 대상 및 방법: $352{\pm}18g$의 흰쥐(n=10)를 이용하여 ketamine 근육내 주사로 마취하여 정중흉골절개술을 시행하고 심장을 노출시킨 후 우측 폐정맥을 크립을 이용하여 폐쇄하였으며, 15일 후 폐동맥압, 좌심실과 심실중격 대비 우심실 무게비(RV/LV+Sweight ratio), 말초 폐동맥의 외측지름대비 벽두께비(percent wall thickness (%WT)) 등을 측정하여 대조군(n=5)과 비교하였다. 결과: 폐정맥 폐쇄군의 폐동맥압은 38{\pm}12 mmHg로 대조군의 $13{\pm}4mmHg$에 비해 의의 있게 증가되었다(p<0.05). 좌심실과 심실중격 대비 우심실 무게비는 대조군의 $0.35{\pm}0.04$에 비해 $0.52{\pm}0.07$로 통계적으로 유의한 우심실 비대 소견을 보였고(p<0.05), 말초 폐동맥의 외측지름대비 벽두께비는 폐쇄군이 $22.4{\pm}6.7%$로 대조군의 $6.7{\pm}3.4%$에 비해 증가되었다(p<0.05). 결론: 한쪽 폐의 폐정맥 폐쇄는 폐동맥고혈압, 우심실 비대, 말초 폐동맥의 중막 비후 소견을 유도하였다. 이는 폐동맥 혈관개조의 병리학적 특성을 나타내는 것으로 일측 폐정맥을 폐쇄하는 경우 반대측 폐장의 폐혈류량 증가뿐만 아니라 혈관개조를 유발하는 내막의 손상을 동반함을 알 수 있었다.

Keywords

References

  1. Liptay MJ, Parks WC, Mecham JR, Kaiser JD, Bontney LR. Neointimal machrophages co-localize with extracellular matrix gene expression in human atherosclerotic pulmonary arteries. J Clin Invest 1993;91:588-94 https://doi.org/10.1172/JCI116238
  2. Glagov S, Ozoa AK. Significance of the relatively low incidence of atheroscleosis in the pulmonary, renal, and mesenteric arteries. Ann NY Acad Sci 1968;149:940-55 https://doi.org/10.1111/j.1749-6632.1968.tb53848.x
  3. Wissler RW, Vesselinovitch D. Atherogenesis in the pulmonary artery. In: Fishman AP. Pulmonary Circulation. Normal and Abnormal. 2nd ed. Philadelphia: U. Pensylvania Press. 1990;245-55
  4. Prosser IW, Stenmark KR, Suthar EC, Crouch RP. Regional heterogenecity of elastin and collagen gene expression in interlobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am J Pathol 1989;135:1073-87
  5. Stenmark KR, Fasules DM, Hyde NF, Voelkel J, Willson JT. Severe pulmonary hypertension and arterial adventitia changes in newborn calves. Am J Physiol 1987;62:821-30
  6. Lipke DW, Arcot SS, Gillepsie MN, Olson JW. Temporal alteration in specific basement membrane components in lungs from monocrotaline-treated rats. Am J Respir Cell Mol Biol 1993;9:418-28 https://doi.org/10.1165/ajrcmb/9.4.418
  7. Tanaka Y, Schuster DP, Elaine C, Patterson GA, Botney MD. The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 1996;98:434-42 https://doi.org/10.1172/JCI118809
  8. Cowan KN, Jones PL, Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with supression of proteolytic activity, inhibition of tenascin- C, and smooth muscle cell apoptosis. Circ Res 1999; 84:1223-33 https://doi.org/10.1161/01.RES.84.10.1223
  9. Gibbons GH, Dzau VJ. Mechanisms of diseases: the emerging concept of vascular remodeling. N Engl J Med 1994; 330:1431-38 https://doi.org/10.1056/NEJM199405193302008
  10. Baumbach GL, Heistad DD. Remodeling of cerebral artrioles in chronic hypertension. Hypertension 1989;13:968-72 https://doi.org/10.1161/01.HYP.13.6.968
  11. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW Jr. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 1989;256:H126-31
  12. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-9 https://doi.org/10.1038/362362a0
  13. Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell; an endothelial paradiagm. Circ Res 1993;72:239-45 https://doi.org/10.1161/01.RES.72.2.239
  14. Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the bovine aortic endothelial cell nitric oxide synthesis. J Clin Invest 1992;90:2092-6 https://doi.org/10.1172/JCI116092
  15. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr. Platelet-derived growth factor B chain promotor contains a cis-acting fluid shear- responsive element. Proc Natl Acad Sci USA 1993;90:4591-5
  16. D'Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension; results from a national prospective registry. Ann Intern Med 1991;115:343-9 https://doi.org/10.7326/0003-4819-115-5-343
  17. Thompson KE, Robinovitch M. Human leukocyte elastase mediates release of extracellular matrix-bound bFGF in vascular smooth muscle cell cultures. Mol Biol Cell 1994;5 (Suppl):378a
  18. Perkett EA, Davidson JM, Meyrick B. Sequence of structural changes and elastin peptide release during vascular remodeling in sheep with chronic pulmonary hypertension induced by air embolism. Am J Pathol 1991;139:1319-32
  19. Clowes AW, Reidy MA, Clowes MM. Mechanisms of stenosis after arterial injury. Lab Invest 1983;49:208-15
  20. Todorohovich HL, Johnson DJ, Ranger P, Keeley FW, Ravinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline; a biochemical and ultrastructural study. Lab Invest 1988;58:184-95