Protein Array Fabricated by Microcontact Printing for Miniaturized Immunoassay

  • Lee Woo-Chang (Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lim Sang-Soo (Department of Mechanical Engineering, Sogang University) ;
  • Choi Bum-Kyoo (Department of Mechanical Engineering, Sogang University) ;
  • Choi Jeong-Woo (Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2006.08.01

Abstract

A protein array was fabricated for a miniaturized immunoassay using microcontact printing ($\mu$CP). A polydimethylsiloxane (PDMS) stamp with a 5 $\mu$m$\times$5 /$\mu$m dimension was molded from a silicon master developed by photolithography. Under optimal fabrication conditions, including the baking, incubation, and exposure time, a silicon master was successfully fabricated with a definite aspect ratio. An antibody fragment was utilized as the ink for the $\mu$CP, and transferred to an Au substrate because of the Au-thiol (-SH) interaction. The immobilization and antibody-antigen interaction were investigated with fluorescence microscopy. When human serum albumin (HSA) was applied to the protein array fabricated with an antibody against HSA, the detection limit was 100 pg/ml of HSA when using a secondary antibody labeled with a fluorescence tag. The fabricated protein array maintained its activity for 14 days.

Keywords

References

  1. Bernard, A., J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche. 2000. Microcontact printing of proteins. Adv. Mater. 12: 1067-1070 https://doi.org/10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO;2-M
  2. Chiu, D. T., N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides. 2000. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 97: 2408-2413
  3. Choi, J.-W, Y. S. Nam, and M. Fujihira. 2004. Nanoscale fabrication of biomolecular hayer and its application to biodevices. Biotechnol. Bioproc. Eng. 9: 76-85 https://doi.org/10.1007/BF02932988
  4. Inerowicz, H. D., S. Howell, F. E. Regnier, and R. Reigenberger. 2002. Multiprotein immunoassay arrays fabricated by microcontact printing. Langmuir 18: 5263-5268 https://doi.org/10.1021/la0157216
  5. Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383
  6. Kim, J. S., Y. M. Bae, Y. K. Kim, B. K. Oh, and J. W. Choi. 2006. Antibody layer fabrication for protein chip to detect E. coli O157:H7 using microcontact printing technique. J. Microbiol. Biotechnol. 16: 141-144
  7. Lee, W., B. K. Oh, W. H. Lee, and J. W. Choi. 2005. Immobilization of antibody fragment for immunosensor application based on surface plasmon resonance. Colloids Surf. B Biointerfaces 40: 143-148 https://doi.org/10.1016/j.colsurfb.2004.10.021
  8. Lee, W., D. B. Lee, Y. W. Kim, and J. W. Choi. 2005. Signal amplification of surface plasmon resonance based on gold nanoparticle-antibody conjugate and its application to protein array. Technical Proceedings of the 2005 Nanotechnology Conference and Trade Show, vol. 1, pp. 416-419
  9. Morhard, F., J. P. R. Dahint, and M. Grunze. 2000. Immobilization of antibodies in micropattems for cell detection by optical diffraction. Sens. Actuators B 70: 232-242 https://doi.org/10.1016/S0925-4005(00)00574-8
  10. Mrksich, M., L. E. Dike, J. Tiel, D. E. Ingber, and G. M. Whitesides. 1997. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled mono layers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235: 305-313 https://doi.org/10.1006/excr.1997.3668
  11. Oh, B. K., W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J. W. Choi. 2005. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosen. Bioelectron. 20: 1847-1850 https://doi.org/10.1016/j.bios.2004.05.010
  12. Park, I. S., D. K. Kim, and N. Kim. 2004. Responses of chloramphenicol immunosensor to analyte types. J. Microbiol. Biotechnol. 14: 1157-1162
  13. Santhanam, V. and R. P. Andres. 2004. Microcontact printing of uniform nanoparticle arrays. Nano Lett. 4: 41-44 https://doi.org/10.1021/nl034851r
  14. Schena, M., D. Shalon, and R. W. Davis. 1995. Quantitative monitoring of gene expression patterns with a cDNA microarray. Science 270: 467-470 https://doi.org/10.1126/science.270.5235.467
  15. Shaefering, M., S. Schiller, H. Paul, M. Kruschina, P. Pavilckova, M. Meerkamp, C. Giammasi, and D. Kambhampati. 2002. Application of self-assembly techniques in the design of biocompatible protein microarray surface. Electrophoresis 23: 3097-3105 https://doi.org/10.1002/1522-2683(200209)23:18<3097::AID-ELPS3097>3.0.CO;2-G
  16. Tan, J. L., J. Tien, and Ch. S. Chen. 2002. Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18: 519-523 https://doi.org/10.1021/la011351+
  17. Xia, Y. and G. M. Whitesides. 1998. Soft lithography. Angew Chern. Int. Ed. 37: 550-575 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  18. Zhao, X. M., Y. Xiz, and G. M. Whitesides. 1997. Soft lithography methods for nano-fabrication. J. Mat. Chem. 7: 1069-1074 https://doi.org/10.1039/a700145b