High Voltage Electron Microscopy of Structural Patterns of Plastid Crystalline Bodies in Sedum rotundifolium

HVEM에 의한 둥근잎꿩의 비름 (Sedum rotundifolium L.) 색소체의 결정체 구조

  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Published : 2006.06.30

Abstract

Major contributions has been made in cellular ultrastructure studies with the use of high voltage electron microscopy (HVEM) and tomography. Applications of HVEM, accompanied by appropriate image processing, have provided great improvements in the analysis of three-dimensional cellular structures. In the present study, structural patterns of the crystalline bodies that are distinguished in mesophyll plastids of CAM-performing Sedum rotundifolium L., have been investigated using HVEM and tomography. Tilting, and diffraction pattern analysis were performed during the investigation. The titlting was performed at ${\pm}60^{\circ}\;with\;2^{\circ}$ increments while examining serial sections ranging from 0.125 to $1{\mu}m$ in thickness. The young plastids exhibited crystalline inclusion bodies that revealed a peculiar structural pattern. They were irregular in shape and also variable in size. Their structural attributes affected the plastid morphology. The body consisted of a large number of tubular elements, often reaching up to several thousand in number. The tubular elements typically aggregated to form a fluster The elements demonstrated either a parallel or lattice arrangement depending on the sectioning angle. The distance between the elements was approximately 20nm as demonstrated by the diffraction analysis. HVEM examination of the serial sections revealed an occasional fusion or branching of elements within the inclusion bodies. Finally, a three-dimensional reconstruction of the plastid crystalline bodies has been attempted using two different image processing methods.

둥근잎꿩의비름(Sedum rotundifolium L.) 엽육조직에 대한 초박절편 및 연속 후박절편의 시료를 제작하여 TEM 및 HVEM 고압전자현미경으로 연구하였고, 이로부터 수합된 색소체 결정체 구조의 tilting 및 연속절편 결과에 image processing을 실시하여 세포수준에서의 초미세구조 정보를 추출 3-D 입체구조로 재구현하였다. ${\pm}60^{\circ}$에서의 tilting과 $0.125{\sim}1{\mu}m$에 이르는 연속절편에서 결정체를 구성하는 미세한 관상요소(tubular elements)의 구조적 특성을 조사한 결과, 결정체는 일시적으로 분화 초기단계에서 형성되어 $4{\sim}5{\mu}m$에 이르기까지 크게 여러 형태로 발달하나, 엽육조직이 성숙하면 이들 구조는 색소체에서 완전히 사라지는 특성을 보였다. 결정체를 구성하는 관상의 요소는 절단각도에 따라 격자구조 또는 평행구조를 이루었으며, 이들 구조 내에 형성되어 있는 정교한 구조적 pattern은 회절분석에 의해 확인되었다. 결정체 내에는 규칙적으로 약 20nm의 격자간격으로 이루어진 초미세관상의 요소들이 수백-수천 개 무리지어 발달하였다. 색소체 내에는 이러한 결정체가 하나 이상 형성되기도 하며, 일부 결정체의 경우 결정구조의 말단부위가 국소적으로 융합 또는 분지되기도 하였다. 결정구조는 막으로 둘러싸이지는 않으나, 대부분 틸라코이드 막성계와 밀착하여 발달하였다. 일차적으로 수집된 HVEM 상의 2-D 결과는 디지털화 과정을 거친후 Imod와 3-D Max를 이용하여 3-D 입체구조로 재구현되었다.

Keywords

References

  1. Frank J, Wagenknecht T, McEwen BF, Marko M, Hsieh C, Mannella CA: Three-dimensional imaging of biological complexity. J Struct Biol 138 : 85-91, 2002 https://doi.org/10.1016/S1047-8477(02)00019-9
  2. Giddings, TH: Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212, 53-61, 2003 https://doi.org/10.1046/j.1365-2818.2003.01228.x
  3. Gilky JC, Staehelin LA: Advances in ultra-rapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3 : 177-210, 1986 https://doi.org/10.1002/jemt.1060030206
  4. Hama K: Biological application of high voltage electron microscopy. J Electron Microsc 38 Suppl 156-162, 1989
  5. Haseloff J: Old botanical techniques for new microscopes. Biotechniques 34 : 1174-1182, 2003
  6. Hessler D, Young SJ, Ellisman MH: A flexible environment for the visualization of three-dimensional biological structures. J Struct Biol 116 : 113-119, 1996 https://doi.org/10.1006/jsbi.1996.0019
  7. Katsuna N, Kumagai F, Sato MH, Hasezawa S: Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol 44 : 1045-1054, 2003 https://doi.org/10.1093/pcp/pcg124
  8. Kim I: Chloroplast microtules in young leaves of Sedum rotundifolium. J Plant Biol 40 : 115-119, 1997 https://doi.org/10.1007/BF03030243
  9. Koster AJ, Grimm R, Typke D, Heherl R, Stoschck A, Walz J, Baumeister W: Perspectives of molocular and cellular electron microscopy. J Struct Biol 120 : 276-308, 1997 https://doi.org/10.1006/jsbi.1997.3933
  10. Kremer JR, Mastronarde DN, McIntosh JR: Computer visualization of the three-dimensional image data using IMOD. J Struct Biol 116 : 71-76, 1996 https://doi.org/10.1006/jsbi.1996.0013
  11. Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepcheko B, Loew LM, Hsieh, Buttle K, Marko M: Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. Life 52 : 93-100, 2001 https://doi.org/10.1080/15216540152845885
  12. Marko M, Leith A: Sterecon three-dimensional reconstructions from stereoscopic contouring. J Struct Biol 116 : 93-98, 1996 https://doi.org/10.1006/jsbi.1996.0016
  13. McDonald MS: Photobiology of Higher Plant. Wiley, Chichester, pp. 148-198, 2003
  14. Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA: Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron microscopy. Plant Cell 13 : 2033-2051, 2001 https://doi.org/10.1105/tpc.13.9.2033
  15. Otegui MS, Staehelin LA: Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218 : 501-515, 2004 https://doi.org/10.1007/s00425-003-1125-1
  16. Pitte J, Henn C, Andreas A, Heymann JB: Visualizing 3D data obtained from microscopy on the internet. J Struct Biol 125 : 123-132, 1999 https://doi.org/10.1006/jsbi.1998.4075
  17. Ryberg H, Ryberg M, Sundqvist C: Plastid ultrastruture and development. In: Sundqvist C, Ryberg M, eds, Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp. 25-62, Academic Press, San Diego, 1993
  18. Saito C, Ueda T, Abe H, Wada Y, Kuroiwa T, Hisada A, Furuya M Nakank A: A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29 : 245-255, 2002 https://doi.org/10.1046/j.0960-7412.2001.01189.x
  19. Salem R, Brandao I: Development of microtubules in chloroplasts of two halophytes forced to follow Crassulacean acid metabolism. J Ultrastruct Res 62 : 132-136, 1978 https://doi.org/10.1016/S0022-5320(78)90026-6
  20. Santos I, Salemma R: Chloroplast microtubules in some CAM plants. Bol Soc Brot Ser 2, 53 : 1115-1122, 1981
  21. Santos I, Salemma R: Stereological study of the variation of chloroplast tubules and volume in the CAM plant Sedum telephium. Z Pflanzenphysiol 113 : 29-37, 1983 https://doi.org/10.1016/S0044-328X(83)80016-6
  22. Segui-Shimarro JM, Austin JR, White EA, Staehelin LA: Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16 : 836-856, 2004 https://doi.org/10.1105/tpc.017749
  23. Smith JD, Todd P, Staehelin LA: Modulation of statolith mass and growing in white clover (Trifolium repens) grown in 1-g, microgravity and on the clinostat. Plant J 12 : 1361-1373, 1997 https://doi.org/10.1046/j.1365-313x.1997.12061361.x
  24. Verma DPS, Hong Z: The ins and outs in membrane dynamics: tubulation and vesiculation. Trends Pl Sci 10 : 159-165, 2005 https://doi.org/10.1016/j.tplants.2005.02.004
  25. Waters M, Pyke K: Plastid development and differentiation. In: Moller SG, ed, Plastids, pp. 30-59, Blackwell Publishing, Oxford, 2005
  26. Winkler H, Taylor KA: Software for 3-D reconstruction from images of oblique sections through 3-D crystals. J Struct Biol 116 : 241-247, 1996 https://doi.org/10.1006/jsbi.1996.0037