DOI QR코드

DOI QR Code

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties

온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석

  • 장용훈 (연세대학교 기계공학부) ;
  • 이상영 (연세대학교 대학원 기계공학부)
  • Published : 2006.08.01

Abstract

The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

Keywords

References

  1. Saka, M. and Abe, H., 1992, 'Path-Independent Integrals for Heat Conduction Analysis in Electrothermal Crack Problems,' J. Thermal Stresses, Vol. 15, pp. 71-83 https://doi.org/10.1080/01495739208946121
  2. Olsson, J., 2001, 'Self-heating Effects in SOI Bipolar Transistors,' Microelectron. Eng., Vol .56, pp. 339-352 https://doi.org/10.1016/S0167-9317(01)00571-8
  3. Kohlrausch, F., 1900, 'Uber den Stationaren Temperaturzustand Eines Elektrisch Geheizten Leiters,' Ann. Phys.Lpz, Vol. 1, pp. 132-158
  4. Greenwood, J. A. and Williamson, J. B. P., 1958, 'Electrical Conduction in Solids: II. Theory of Temperature-Dependent Conductors,' Proc. R. Soc. Lond. A, Vol. 246, pp. 13-31 https://doi.org/10.1098/rspa.1958.0103
  5. Diesselhorst, H. 1900, 'Uber das Problem Eines Elektrisch Erwarmten Leiters,' Ann. Phys. Lpz, Vol. 1, pp.312-325
  6. Fournet, G., 1997, 'Phenomena in Conductors Having Temperature Dependent Electrical and Thermal Conductivities,' J. Physique III, Vol. 7, pp. 2003-2029 https://doi.org/10.1051/jp3:1997239
  7. Jang, Y. H. Barber, J. R. and Hu; S. J., 1998, 'Electrical Conductance Between COnductors with Dissimilar Temperature-Dependent Material Properties,' J. Phys. D: Appl. Phys, Vol. 31, pp. 3197-3205 https://doi.org/10.1088/0022-3727/31/22/004
  8. Wang. P, Tian, Z. G. and Bai, X. Z., 2003, 'Electrothermal Stress in Conductive Body with Collinear Cracks,' Theor. Appl. Fract. Mech,' Vol. 40 pp. 187-195 https://doi.org/10.1016/S0167-8442(03)00045-4
  9. Choi, H. J. and Thangitharn, S., 1991 'Heat Conduction in Laminated Anisotropic Composites with a Debonding,' Int. J. Eng. Sci, Vol. 29, pp. 819-829 https://doi.org/10.1016/0020-7225(91)90004-M
  10. Muskhelishvili, N. I., 1953, 'Singular Integral Equations,' Noordhoff, Groningen, pp. 76-105
  11. Stroud, A. H. and Secrest, D. 1966, 'Gaussian Quadrature Formula,' Prentice Hall, Englewood Cliffs
  12. Friedman, B., 1969, 'Lectures on ApplicationOriented Mathematics,' Holden-Day, San Francisco, pp. 1-35