• Title/Summary/Keyword: Temperature-Dependent Material Peroperty

Search Result 1, Processing Time 0.013 seconds

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties (온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석)

  • Jang Yong-Hoon;Lee Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.949-956
    • /
    • 2006
  • The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.