세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine

  • 강민주 (한국지질자원연구원 지질환경재해연구부) ;
  • 이평구 (한국지질자원연구원 지질환경재해연구부) ;
  • 염승준 (한국지질자원연구원 지질환경재해연구부)
  • Kang Min-Ju (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Pyeong-Koo (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources) ;
  • Youm Seung-Jun (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources)
  • 발행 : 2006.06.01

초록

자연저감의 메커니즘을 설명하기 위하여 납과 비소 함량이 높은 세창광산 지역의 광산배수, 침출수 및 지표수의 지구화학적 변화를 연구하였다. 주요 오염원인 폐광석에서 미량원소의 분산 및 물리화학적인 조건의 변화에 따른 미량원소의 이동도를 평가하기 위하여 총함량 분석 및 연속추출을 수행하였다. 이러한 광산배수, 침출수 및 지표수의 화학성분은 시료채취의 위치 및 시기별로 변화가 컸으며, 특히 pH가 매우 낮고(pH 2.1-3.3), 황산염(최대 661mg/l) 및 미량원소의 함량(최대 169mg/l Zn, 27mg/l As, 3.97mg/l Pb, 2.99mg/l Cu and 1.88mg/l Cd)이 매우 높은 경우가 관찰되었다. 그러나 지표수에서의 비소와 미량원소의 함량은 특별한 처리를 하지 않아도 광산배수와 침출수가 배출되는 지점으로부터 가까운 거리인 지류와 합류되는 지점(8번, 16번)에서 자연배경값과 거의 유사한 함량으로 낮아졌다. 철-황화광물의 산화작용과 가수분해에 따른 비정질 철-2차광물의 침전작용은 하천으로 유입되는 미량원소의 이동을 크게 감소시켜주는 효과적인 자연저감 메커니즘이었다. 또한 오염되지 않은 지표수와의 합류에 의한 희석효과도 미량원소의 함량을 감소시키고 점진적으로 pH를 증가시켰다. 한편, 가장 용해성이 높은 원소인 아연은 pH가 거의 중성에 가까워질 때까지 상당량이 용해된 용질상태로 남아있었다. 환경독성학적인 관점으로 볼 때, 세창광산 지역에서는 아연에 의한 오염에 특별한 관심을 가져야 한다. 이러한 것은 수분을 함유한 폐광석에서 아연의 대부분이 양이 온교환형(전체 함량의 65-89%)으로 존재하고, 납은 전체함량의 65-89%가 산화광물 및 탄산염광물형태와 수반되었으며, 카드뮴, 구리 및 비소는 잔류형태가 우세한 것으로 나타난 연속추출실험 결과에 의해서도 확인되었다. 건조상태의 폐광석에서는 전체 납 함량의 34-48%가 쉽게 용출될 수 있는 양이온교환형태로 존재하였다. 양이온교환 및 탄산염광물 수반된 금속의 비율을 고려하면 각 미량원소의 상대적인 이동도는 Zn>Pb>Cd>As=Cu의 순서로 감소하는 것으로 판단된다.

The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

키워드

참고문헌

  1. 강민주, 이평구, 최상훈, 신성천 (2003) 서보광산 폐광석 내 2차 광물에 의한 중금속 고정화, 자원환경지질, 36 권, 177-189
  2. 강민주, 이평구 (2005) 폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성. 자원환경지질, 38권, p. 499-512
  3. 대한광업진흥공사 (1977) 광상시추조사보고 3호
  4. Berger, A.C., Bethke, C.M. and Krumhansl, J.L. (2000) A process model of natural attenuation in drainage from a historic mining district. Appl. Geochem., v. 15, p.655-666 https://doi.org/10.1016/S0883-2927(99)00074-8
  5. Bigham, J.M. (1994) Mineralogy of ochre deposits formed by sulfide oxidation. In: Jambor, J.L. and Blowes, D.W., Editors, 1994. Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of Canada, p. 103-132
  6. Bigham, J.M. and Nordstrom, D.K. (2000) Iron and aluminum hydroxysulfates from acid suIfate waters. In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Rev Mineral Geochem. v. 40, p. 351-403 https://doi.org/10.2138/rmg.2000.40.7
  7. Bowell, R.J. and Bruce, I. (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Appl. Geochim., v. 10, p. 237-250 https://doi.org/10.1016/0883-2927(94)00036-6
  8. Carbonell-Barrachina, A.A., Rocamora, A., Garcia-Gomis, C., Martinez-Sanchez, F. and Burla, F. (2004) Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcal1ar enbironmental disaster, Geoderma, v. 122, p. 195-203 https://doi.org/10.1016/j.geoderma.2004.01.008
  9. Casiot C., Morin G., Juillot F., Bruneel O., Personne, J.C., Leblanc M., Duqesne K., Bonnefoy V. and Elbaz-Poulichet (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Camoule's creek, France). Water Res. v. 37, p.2929-2936 https://doi.org/10.1016/S0043-1354(03)00080-0
  10. Chapman, B.M., Jones, D.R. and Jung, R.F. (1983) Processes controlling metal ion attenuation in acid mine drainage stream. Geochim. Cosmochim., Acta 47, p. 1957-1973 https://doi.org/10.1016/0016-7037(83)90213-2
  11. Courtin-Nomade, A., Bril, H., Neel, C. and Lenain, J.F. (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguiales, Aveyron. France. Appl. Geochem., 18, 395-408 https://doi.org/10.1016/S0883-2927(02)00098-7
  12. Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella M.F., White A.F.(eds) Mineral-water interface geochemistry: reviews in mineralogy. Mineralogical Society of America, Washington, v. 23, p. 177-260
  13. Dold, B. and Fontbote, L. (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile, Chem. Geol., v. 189, p. 135163 https://doi.org/10.1016/S0009-2541(02)00044-X
  14. Dzombak, D.A. and Morel, F.M.M. (1990) Surface complexation modeling-hydrous ferric oxide. Wi!ey, New York, p. 393
  15. Frau, F. (2000) The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications, Mineral. Mag., v. 64, p. 995-1006 https://doi.org/10.1180/002646100550001
  16. Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., and Ikeda, H. (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl. Geochem., v. 18, p. 1267-1278 https://doi.org/10.1016/S0883-2927(03)00011-8
  17. Hudson-Edwards, KA, Schell, C. and Macklin, M.G (1999) Mineralogy and geochemistry of alluvium contaminated by metal minig in the Rio Tionto area, southwest Spain. Appl. Geochim., v. 14, p. 1015-1030 https://doi.org/10.1016/S0883-2927(99)00008-6
  18. Kimball, B.A., Broshears, R.A., McKnight, D.M. and Bencala, K.E. (1994) Effects of instream pH modification on transport of sulfide-oxidation products. In: Alpers, C.N. and Blowes, D.W., Editors, 1994. The Environmental Geochemistry of Sulfide Oxidation, Am. Chem. Soc. Symp. Series, v. 550, .p. 224-243
  19. Leblanc, M., Achard, B., Ben Othman, D., Luck, J. M., Bertrand-Sarfati, J. and Personne, J.Ch. (1996) Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl. Geochem., v. 11, p. 541-549 https://doi.org/10.1016/0883-2927(96)00010-8
  20. Lee, P.K., Kang, M.J., Choi, S.H. and Touray, J.C. (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea, Appl. Geochem., v. 20, p. 1687-1703 https://doi.org/10.1016/j.apgeochem.2005.04.017
  21. Mascaro, I., Benvenuti, B., Corsini, F., Costagliola, P., Lattanzi, P., Parrini, P. and Tanelli, G (2001) Mine wastes at the polymetallic deposit of Fenice Capanne(southem Tuscany, Italy). Mineralogy, geochemistry, and environmental impact, Environ. Geol., 41, 417-429 https://doi.org/10.1007/s002540100408
  22. McCarty, D.K, Moore, J.N. and Marcus, W.A. (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extraction. Appl. Geochim., v. 13, p. 165-176 https://doi.org/10.1016/S0883-2927(97)00067-X
  23. McGregor, R.G, Blowes, D.W., Jambor, J.L. and Robertson, W.D. (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada, J. Contaminant Hydrol., v. 33, p. 247-271 https://doi.org/10.1016/S0169-7722(98)00060-6
  24. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton- Fong, C.J.. and Stuparyk, R.A. (1998) Mineralogical study of base metal tailings with various sulfide contents, oxidized in laboratory columns and field lysimeters, Environ. Geol., 33, 209-217 https://doi.org/10.1007/s002540050239
  25. Smith, K.S. (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee, GS., Losdon, MJ. (eds) The environmental geochemistry of mineral deposits, Part A. Processes, Techniques, and Health Issue:s: Society of Economic Geologists. Rev. Econ. Geol. v. 6A, p. 161.182
  26. Tessier, A., Campbell, P.Gc. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., v. 51, p. 844-850 https://doi.org/10.1021/ac50043a017
  27. Webster, J.G, Swedlund, PJ. and Webster, K.S. (1998) Trace metal adsorption onto an acid mine drainage Fe(III) oxyhydroxysulphate. Environ. Sci. Technol., v. 32, p. 1361-1368 https://doi.org/10.1021/es9704390