• Title/Summary/Keyword: Waste rocks

Search Result 89, Processing Time 0.027 seconds

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

Study on technique development for the solidified body of rock waste and evaluation of fracture toughness (암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyosun;Kim, Jin-Yong;Lee, Jeong-Gee;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.

A Current Status of Natural Analogues Programs in Nations Considering High-Level Radioactive Waste Disposal

  • HunSuk Im;Dawoon Jeong;Min-Hoon Baik;Ji-Hun Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.65-93
    • /
    • 2023
  • Several countries have been operating radioactive waste disposal (RWD) programs to construct their own repositories and have used natural analogues (NA) studies directly or indirectly to ensure the reliability of the long-term safety of deep geological disposal (DGD) systems. A DGD system in Korea has been under development, and for this purpose a generic NA study is necessary. The Korea Atomic Energy Research Institute has just launched the first national NA R&D program in Korea to identify the role of NA studies and to support the safety case in the RWD program. In this article, we review some cases of NA studies carried out in advanced countries considering crystalline rocks as candidate host rocks for high-level radioactive waste disposal. We examine the differences among these case studies and their roles in reflecting each country's disposal repository design. The legal basis and roadmap for NA studies in each country are also described. However because the results of this analysis depend upon different environmental conditions, they can be only used as important data for establishing various research strategies to strengthen the NA study environment for domestic disposal system research in Korea.

Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area (장풍 폐광산 주변 지질환경에서 중금속의 존재형태)

  • Lee In-Gyeong;Lee Pyeong-Koo;Choi Sang-Hoon;Kim Ji-Soo;So Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.699-705
    • /
    • 2005
  • In order to identify the speciation of As and trace elements which are contained weathered waste rocks on the abandoned Jangpoong Cu mine area, five fraction sequential extraction was carried out. Concentrations of the extraction solutions which were acquaired each fraction were mesured by ICP-AES. Mineral characters of weathered waste rocks were determinated by XRD. The weathered waste rocks could divide into two types (Type I and type II). Type land type II weathered waste rocks are mainly composed of a quartz and a calcite, respectively. The most dominant speciation of As, Co and Fe is residual phase. Most of the speciation of Cd, Mn and Zn is residual phase for type I and Fe-Mn oxide phase for type II. In case of Cu, residual phase is predominant in type I and sulfide is predominet in type II. The most dominant speciation of Pb for type I and type II is associated with the residual phase and Fe-Mn oxide phase, respectively. At pH 4-7 range, the order of relative mobility considers Zn>Cu>Cd>Pb>Co>AS in type I, and Cd>Cu>Zn>Pb>As>Co in type II.

Heavy Metal Retention by Secondary Minerals in Mine Waste Rocks at the Abandoned Seobo Mine (서보광산 폐광석 내 2차 광물에 의한 중금속 고정화)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.177-189
    • /
    • 2003
  • The main purposes of this study are to utilize mineralogical studies such as optical microscope, XRD and SEM/EDS analyses to characterize the oxidation of sulfide minerals and the mechanisms controlling the movement of dissolved metals from waste rocks at the abandoned Seobo mine. Mineralogical research of the waste rocks confirms the presence of anglesite, covellite, goethite, native sulfur and nsutite as secondary minerals, suggesting that these phases control the dissolved concentrations of As, Cu, Fe, Mn, Pb and Zn. The dissolved metals are precipitated, adsorbed and/or coprecipitated with(or within) Fe(Mn)-hydroxides and Mn(Fe)-hydroxides. The main phases of secondary mineral, Fe-hydroxide, can be classified as amorphous or poorly crystalline and more crystallized phases(e.g. goethite) by crystallinity. Amorphous or poorly crystalline Fe-hydroxide has relatively high As contents(9-24 wt.%). This poorly crystalline Fe-hydroxide changes toward more crystallized phase(e.g. goethite) which contains relatively low As(0.6-7.7 wt.%). These results are mainly due to the progressive release of As with the crystallization evolution of the As-trapping poorly crystalline Fe-hydroxides. It is also attributed to the differences of specific surface areas between the poorly crystalline Fe-hydroxides and well crystallized phases. The dissolved metals from waste rocks at Seobo mine area are naturally attenuated by a series of precipitation(as Fe, Mn, Cu, Pb), coprecipitation(Fe, Mn) and adsorption(As, Cu, Pb, An) reactions. The results of mineralogical researches permit to assess the environmental impacts of mine waste rocks in the areas, and can be used as a useful data to lay available mine restoration plan.

The Leaching of Valuable Metal from Mine Waste Rock by the Adaptation Effect and the Direct Oxidation with Indigenous Bacteria (토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • The aim of this study was leaching valuable metal ions from mine waste rocks which were abandoned mine site using indigenous aerobic bacteria. In order to tolerate the the indigenous aerobic bacteria to the heavy metal ions they were repeatedly adapted in $CuSO_4{\cdot}5H_2O$ environment. As the repeated generation-adaptation progressed, the pH values of the growth-medium were gradually decreased. During bio-leaching experiments with indigenous aerobic bacteria raised in a heavy metal ion environment for 42 days, the pH of the leaching solution was decreased while increasing the adaptation period. The indigeous bacteria were much more active on the surface of Younhwa waste rocks which contained relatively few the chalcopyrite and Cu content than the Goseong mine waste rocks, and also the amount of Cu and Fe ions were leached more in the Younhwa sample(leaching rate of 92.79% and 55.88%, respectively) than the Goseong sample(leaching rate of 66.77% and 21.83%, respectively). Accordingly, it is confirmed that valuable metal ions can be leached from the mine waste rocks, if any indigenous bacteria which inhabits a mine environment site for a long time with heavy metal ions can be used, and these bacteria can be progressively adapted in the growth-solutions containing the target heavy metals.

A Numerical analysis of Underground Repository Cavern in Korean Crystalline rocks (우리나라 결정질암내 동굴처분장에 대한 수치해석)

  • 윤건신
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.68-84
    • /
    • 1991
  • A numerical analysis using Universal Distinct Element Code program for the nuclear waste disposal cavern has been performed for a typical Korean crystalline rock condition with same geometry of Swedish low and intermediate nuclear waste disposal repository(S.F.R). The stress concentration, displacement and safety factor for the typical single cross section of cavern, 5 caverns and a silo are analyzed.

  • PDF

Analysis of Porosity and Distribution of Pores in Rocks by Micro Focus X-Ray CT (미소 초점 X선 CT를 이용한 암석 내 공극의 분포 및 공극률 분석)

  • Jeong, Gyo-Cheol;Takahashi, Manabu
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.461-465
    • /
    • 2010
  • Weathering and permeability in rocks play a very important role in underground disposal of radioactive waste and their long-term management as well as stability security of rock structures. Weathering and permeability of rocks are largely controlled by the characters of inner structures of rocks. In other words, weathering rate can be accelerated depending on the quantity of pore and microcrack in rocks. Quantitative evaluation of inner structures of rocks can serve as a tool that can assess the degree of weathering of rocks. Therefore it can be said that the understanding of three dimensional distribution of the inner structure of rocks is important for long-term management of rock structures. This study was performed to analyze three dimensional distribution of pore in rocks using Micro Focus X-ray CT on fresh granite and weathered granite from Korea. Results of the analysis clearly show distribution of pore and porosity of the inner rock.