DOI QR코드

DOI QR Code

ON THE RATE OF COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF RANDOM ELEMENTS

  • Sung, Soo-Hak (Department of Applied Mathematics Pai Chai University) ;
  • Volodin Andrei I. (Department of Mathematics and Statistics University of Regina)
  • Published : 2006.07.01

Abstract

Let {$V_{nk},\;k\;{\geq}\;1,\;{\geq}\;1$} be an array of rowwise independent random elements which are stochastically dominated by a random variable X with $E\|X\|^{\frac{\alpha}{\gamma}+{\theta}}log^{\rho}(\|X\|)\;<\;{\infty}$ for some ${\rho}\;>\;0,\;{\alpha}\;>\;0,\;{\gamma}\;>\;0,\;{\theta}\;>\;0$ such that ${\theta}+{\alpha}/{\gamma}<2$. Let {$a_{nk},k{\geq}1,n{\geq}1$) be an array of suitable constants. A complete convergence result is obtained for the weighted sums of the form $\sum{^\infty_k_=_1}\;a_{nk}V_{nk}$.

Keywords

References

  1. S. E. Ahmed, R. G. Antonini, and A. I. Volodin, On the rate of complete conver- gence for weighted sums of arrays of Banach space valued random elements with application to moving average processes, Statist. Probab. Lett. 58 (2002), no. 2, 185-194 https://doi.org/10.1016/S0167-7152(02)00126-8
  2. L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123 https://doi.org/10.2307/1994170
  3. P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statistics 20 (1949), 286-291 https://doi.org/10.1214/aoms/1177730037
  4. P. Erdos, Remark on my paper 'On a theorem of Hsu and Robbins', Ann. Math. Statistics 21 (1950), 138 https://doi.org/10.1214/aoms/1177729897
  5. P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31
  6. T.-C. Hu, D. Li, A. Rosalsky, and A. I. Volodin, On the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl. 47 (2003), 455-468 https://doi.org/10.1137/S0040585X97979858
  7. T.-C. Hu, A. Rosalsky, D. Szynal and A. I. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992 https://doi.org/10.1080/07362999908809645
  8. A. Kuczmaszewska and D. Szynal, On complete convergence in a Banach space, Internat. J. Math. Math. Sci. 17 (1994), no. 1, 1-14 https://doi.org/10.1155/S0161171294000013
  9. S. H. Sung, Complete convergence for weighted sums of arrays of rowwise in- dependent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255-267 https://doi.org/10.1080/07362999708809474
  10. A. Volodin, R. G. Antonini and T.-C. Hu, A note on the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Lobachevskii J. Math. (electronic) 15 (2004), 21-33
  11. X. Wang, M. B. Rao and X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115-132 https://doi.org/10.1080/07362999308809305

Cited by

  1. Complete moment convergence for i.i.d. random variables vol.91, 2014, https://doi.org/10.1016/j.spl.2014.04.001
  2. Complete moment convergence for weighted sums of sequences of independent random elements in Banach spaces vol.65, pp.2, 2014, https://doi.org/10.1007/s13348-013-0089-0
  3. Toeplitz lemma, complete convergence, and complete moment convergence vol.46, pp.4, 2017, https://doi.org/10.1080/03610926.2015.1026996
  4. Complete convergence for weighted sums of arrays of banach-space-valued random elements* vol.52, pp.3, 2012, https://doi.org/10.1007/s10986-012-9175-3
  5. Some complete convergence results for row sums from arrays of rowwise independent random elements in Rademacher type p Banach spaces vol.32, pp.1, 2011, https://doi.org/10.1134/S1995080211010112
  6. A Note on the Rate of Complete Convergence for Weighted Sums of Arrays of Banach Space Valued Random Elements vol.29, pp.2, 2011, https://doi.org/10.1080/07362994.2011.548670
  7. Complete moment convergence for weighted sums of arrays of Banach-space-valued random elements vol.67, pp.3, 2016, https://doi.org/10.1007/s13348-015-0143-1