Browse > Article
http://dx.doi.org/10.4134/JKMS.2006.43.4.815

ON THE RATE OF COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF RANDOM ELEMENTS  

Sung, Soo-Hak (Department of Applied Mathematics Pai Chai University)
Volodin Andrei I. (Department of Mathematics and Statistics University of Regina)
Publication Information
Journal of the Korean Mathematical Society / v.43, no.4, 2006 , pp. 815-828 More about this Journal
Abstract
Let {$V_{nk},\;k\;{\geq}\;1,\;{\geq}\;1$} be an array of rowwise independent random elements which are stochastically dominated by a random variable X with $E\|X\|^{\frac{\alpha}{\gamma}+{\theta}}log^{\rho}(\|X\|)\;<\;{\infty}$ for some ${\rho}\;>\;0,\;{\alpha}\;>\;0,\;{\gamma}\;>\;0,\;{\theta}\;>\;0$ such that ${\theta}+{\alpha}/{\gamma}<2$. Let {$a_{nk},k{\geq}1,n{\geq}1$) be an array of suitable constants. A complete convergence result is obtained for the weighted sums of the form $\sum{^\infty_k_=_1}\;a_{nk}V_{nk}$.
Keywords
arrays of random elements; rowwise independence; weighted sums; complete convergence; rate of convergence; convergence in probability;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 P. Erdos, Remark on my paper 'On a theorem of Hsu and Robbins', Ann. Math. Statistics 21 (1950), 138   DOI   ScienceOn
2 P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31
3 T.-C. Hu, A. Rosalsky, D. Szynal and A. I. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992   DOI   ScienceOn
4 A. Kuczmaszewska and D. Szynal, On complete convergence in a Banach space, Internat. J. Math. Math. Sci. 17 (1994), no. 1, 1-14   DOI   ScienceOn
5 A. Volodin, R. G. Antonini and T.-C. Hu, A note on the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Lobachevskii J. Math. (electronic) 15 (2004), 21-33
6 S. H. Sung, Complete convergence for weighted sums of arrays of rowwise in- dependent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255-267   DOI   ScienceOn
7 L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123   DOI
8 P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statistics 20 (1949), 286-291   DOI
9 S. E. Ahmed, R. G. Antonini, and A. I. Volodin, On the rate of complete conver- gence for weighted sums of arrays of Banach space valued random elements with application to moving average processes, Statist. Probab. Lett. 58 (2002), no. 2, 185-194   DOI   ScienceOn
10 T.-C. Hu, D. Li, A. Rosalsky, and A. I. Volodin, On the rate of complete con- vergence for weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl. 47 (2003), 455-468   DOI   ScienceOn
11 X. Wang, M. B. Rao and X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115-132   DOI   ScienceOn