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ON THE RATE OF COMPLETE
CONVERGENCE FOR WEIGHTED SUMS
OF ARRAYS OF RANDOM ELEMENTS

Soo HAkK SUNG AND ANDREI I. VOLODIN

ABSTRACT. Let {Vy.k,k > 1,n > 1} be an array of rowwise inde-
pendent random elements which are stochastically dominated by
a random variable X with E|X|%+9 log?(|X]) < oo for some p >
0, > 0,7 > 0,0 > 0 such that 6+a/y < 2. Let {ank, k > 1,n > 1}
be an array of suitable constants. A complete convergence result is
obtained for the weighted sums of the form } .2 | @nk Vok-

1. Introduction

The concept of complete convergence of a sequence of random vari-
ables was introduced by Hsu and Robbins [5] as follows. A sequence
{Un,n > 1} of random variables converges completely to the constant 6
if -

> P(|U,—6]>€) <oo foralle>0.

n=1
The classical Hsu-Robbins-Erdés theorem (Erdds [3, 4]) states that, for
a sequence {X,,n > 1} of independent and identically distributed ran-
dom variables, > _; Xi/n converges completely to EX; if and only if
the variance of X is finite. Baum and Katz [2] obtained an elegant gen-
eralization of Hsu-Robbins-Erdés theorem, namely they proved that, for
r>land1<t<2r <2t 350 0" 2P(| 0 (Xk — EX7)] > nte) <
oo for all € > 0 if and only if F|X;|* < cc.

Many authors extended the above results to Banach space valued
random elements, for example, see Ahmed et al. [1], Hu et al. [6, 7],
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Kuczmaszewska and Szynal [8], Sung [9], and Wang et al. [11]. A se-
quence of Banach space valued random elements is said to converge
completely to the 0 element in the Banach space if the corresponding
sequence of norms converges completely to 0.

Hu, Rosalsky, Szynal and Volodin [7] presented a general result (cf.
Theorem 1 below) establishing complete convergence for the row sums
of an array of rowwise independent but not necessarily identically dis-
tributed Banach space valued random elements. Their result also spec-
ified the corresponding rate of convergence. The Hu, Rosalsky, Szynal
and Volodin [7] result unifies and extends previously obtained results in
the literature in that many of them (for example, results of Hsu and Rob-
bins [5], Hu et al. [6], Kuczmaszewska and Szynal [8], Sung [9], Volodin
et al. [10], and Wang et al. [11]) follow from it.

In the following we assume that {V,x,k > 1,n > 1} is an array of
rowwise independent random elements in a real separable Banach space
and {ank, k > 1,n > 1} is an array of constants. Denote

o0
Sp = Z Onk Vik-
k=1

In the next theorem the weights a,; are built into the array (that is,
ank = 1 for all k& and n).

THEOREM 1. (Hu et al. [7]) Let {cn,n > 1} be a sequence of positive
constants. Suppose that

o0 o0
(1) ZC“ZP(HV"’“H >¢€) < oo foralle >0,
n=1 k=1

o o0 J
(2) ch (ZEHVnqu> < oo for some 0 < ¢ <2 and J > 2,

n=1 k=1

o0

(3) § Vnk '_Pi) 0)
k=1
and

(4) if liminfc, =0, then Y P(|[Vng]| > 6) = o(1) for some § > 0.

n—o0
k=1

Then

o0
chP(IISnH > €) < oo for all € > 0.

n=1
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It is implicitly assumed in Theorem 1 that the series .S, converges
a.s.

The article Hu et al. [6] is devoted to presenting applications of The-
orem 1 to obtain new complete convergence results. Theorem 2 gener-
alizes results of Hsu and Robbins [5], Kuczmaszewska and Szynal [8],
Sung [9], Wang et al. [11] in three directions, namely:

(1) Banach space valued random elements instead of random variables
are considered.

(ii) An array rather than a sequence is considered.

(iii) The rate of convergence is obtained.

THEOREM 2. (Hu et al. [6]). Suppose that the array {Vpk, k > 1,
n > 1} is stochastically dominated by a random variable X. That is,

P(||Vaell > )
< CP(|X|>z) forallz >0 and for all k > 1 and n > 1,

where C' is a positive constant. Assume that

sup |ank] = O(n™7) for some v > 0, and
k>1

Z lank| = O(n®) for some « € [0,7).
k=1

If
E[X|1HA+e+8)/7 < oo for some B € (—1,7 — a — 1], and Sy, Lo,
then
o0
ZnﬁP(HSnH > €) < oo for alle > 0.

n=1

The proof of Theorem 2 is rather complicated once it uses the Stieltjes
integral techniques, summation by parts lemma and so on. The initial
objective of an investigation resulted in the paper Ahmed et al. [1] was
only to find a simpler proof. But it appears that they were able to estab-
lish a more general result and with simpler proof. The result presented
in Theorem 3 below is more general than the main result of Hu et al. [6],
since rates of convergence for moving averages can be established, which
cannot be proved using Theorem 2.

THEOREM 3. (Ahmed et al. [1]) Suppose that the array {Vyk, k >
1,n > 1} is stochastically dominated by a random variable X. Assume
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that
sup |ank| = O(n~7) for some v > 0,
k>1

and
Z |ank| = ) for some a < 7.

Let 3 be such thata+,37é~—1 and fix 6 > 0 such that $+1<6 < 2. If
' l+a+8

E|X|” < 0o, where v = max{1 + 0},
and
S 50,
then

o0
ZnﬁP(HSnH > €) < oo foralle > 0.

n=1
Theorem 3 was slightly generalized in Volodin et al. [10] as follows.

THEOREM 4. (Volodin et al. [10]) Suppose that the array {Vy, k >
1,n > 1} is stochastically dominated by a random variable X. Assume
that

[o o]
sup |ank| = O(n™7) for some ~y > 0, andz lank|® = O(n®)
k21 k=1
for some 0 < 6 < 2 and any o such that 0 + % < 2. Let 3 be such that
a+ B # —1 and fix § > 6 such that%+9<5§2. If

1+a+p

E|X|Y < 00, where v = max{8 + ,0}, and S, il 0,

then
o0
ZnﬂP(HSnH > €) < oo for alle > 0.

n=1

If 8 < —1, then the conclusions of Theorems 3 and 4 are immedi-
ate and hence Theorems 3 and 4 are of interest only for 8 > —1. In
particular, the case 8 = —1 is of special interest. Ahmed et al. [1] con-
jectured that when # = —1, the assumption £|X|” < oo can be replaced
by E|X|7+1 log?(|X|) < 0o (p > 0) in Theorem 3. In the context of
Theorem 4 this conjecture should be rewritten as: when 8 = —1, the
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assumption E|X|” < oo can be replaced by the strictly weaker assump-
tion E|X I%w log?(|X|) < 0o (p > 0). In this paper we give the positive
answer on this conjecture.

It proves convenient to define log(z) = max{1, In(z)}, where In(z) de-
notes the natural logarithm. The symbol C denotes a positive constant
which is not necessarily the same one in each appearance, the symbol
[z] denotes the greatest integer in z, and for a finite set A the symbol
# A denotes the number of elements in the set A.

2. Preliminaries

In this section, we present three lemmas which will be used to prove
our main result.

LEMMA 1. Let {ank,k > 1,n > 1} be an array of constants such that
for some 6 > 0, some «, and any n > 1

oo
Z |ank|0 < n?.
k=1

Let {¢(),7 > 1} be an increasing sequence of positive numbers and

1 1
I,;:=<kl ———— < — ) > >1
" { G+ D <|a"kl‘n7¢(j)}’3_1’n‘ ’

where v is a constant. Then for any m > 1

m
Z #n; < n®t048 (m + 1).
i=1

Proof. Really,

m m 1
D =) ) lenl 5
j=1 j ; |@nk]

O

LEMMA 2. Let {Vuk,k > 1,n > 1} be an array of random ele-
ments which are stochastically dominated by a random variable X. Let
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{ank,k > 1,n > 1} be an array of constants such that

sup lapk| < n77  for some v > 0
k>1 v

and

oo
Z {ankle <n®% for some @ > 0 and some o.

Then for any € > 0 and alln > 1

s ' i /v
ZP(HankVnkH >¢€) < Cn® Zk"eP(k < ‘—— <k+1).
k=1 k=n

Proof. In Lemma 1 consider ¢(j) = 57,7 > 1. Then

1 1
In' = T AN~ nkl < > 1 >
3 {ki G+ D) < |ank] (nj)’Y} for j and n > 1
and
3 Ly < 0ot (m 4 1)
Jj=1

Mention that the condition supy>; |ank| < n™7 ensures us that, for any
n2>1, Ujsiln; = {k|ank # 0}. It follows that

8

ZP(IIankVnkll >e) = Z Y~ PllankVokll > )
k=1

1 kel

P([Vaell > €(nj)”)
€ln;

g P > (m))

'Dl/%g ||

o
I
—
=

IA
a
Nk

<.
Il
—

oo
X
Ij > P(k < |?|1/7 <k+1)
k=nj

I
Q
e

il
o

J

00 [£]

=CY Plk< |—|1/7<k+1 )Yt

k=n j=1
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<CY Plk< ]%P” <k+ 1)n°‘+70([§] +1)

k=n

o0
<C2%n* ) Pk < éﬂ” < k+ 1)k
k=n

O

LEMMA 3. Let all the conditions of Lemma 2 be satisfied and o > 0.
Then for all e > 0

> " P(l|ank Vel > €) < CE ‘— I(|X| > en?).
k=1 ¢
Proof. By Lemma 2
o0
> P(llankVakll > €)
k=1
oo X 1/ p
< a — 2
< Cn ZP(k< - _<_k+1>k
k=n
o) X 1/~
< CZP(k < ’— <k+ 1)1&”“ (since a > 0)
k=n €

< CE|—§—|%+OI(|X| > en?).

3. Main result

In this section, we state and prove our main result.

THEOREM 5. Let {V,k,k > 1,n > 1} be an array of rowwise indepen-
dent random elements which are stochastically dominated by a random
variable X. Let {ank,k > 1,n > 1} be an array of constants such that

sup |ank| = O(n™7)  for some vy > 0
k>1
and

[e o]

Z lank|® = O(n®)  for some o > 0 and 6 > 0 such that 0 + 2<o
Y

k=1
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Assume that
> P
Sp = E Ak Vak — 0.

k=1

IfE|X|%+0 log?(|X 1) < oo for some p > 0, then

= 1
Z EP(”STL“ >e)<oo foralle>0.
n=1

Proof. Without loss of generality, we may assume that sup |ang| <
k>1

o0
n~ 7 and ), |ank[0 < n® For any n > 1 let
k=1

VY — Vo I ([lanik V]l < 1) and

V® = VoI (lankVall > 1), 1<k < oo,

Then

Z AnkVok = Z Z ankv(p) Z Sr(zp), say.

p=1k=1 p=1
To prove the theorem, it suffices to show that for p =1 and 2:

= 1
Z ~—P(|8P| > €) <oo foralle>0.

n=1 n

To do this, we apply Theorem 1 with ¢, = 1/n to the random ele-
ments ankV( ),p =1,2.
Then
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o0 o0
< C’Zn""l Z kP P(k < |§|l/” < k+1) (by Lemma 2)
n=1 k=n

o) X k
=C> KPPk < |?|1/7 <k+1)Y not
k=1 n=1

o0
<CY kP(k < é]l/v <k +1) (since a > 0)
k=1

X e
< CE|Z 7Y < .
€

Hence (1) is satisfied for both series.
By Lemma 3, we have for any ¢ > 0

o0
P ankVord (lank Varll > Dl > €) < PUR1llank Varll > 1)
k=1

oo
< 3 PlllansVaell > 1)
k=1

< CEIX["*1(X| > nY) = o(1),
since E|X |%+0 < 00. Hence T(LZ) £o. By the hypothesis S, L) and

s = Spn— ,(?), we have S5 5 0. We conclude that condition (3) from
Theorem 1 is satisfied for both series.

The condition (4) from Theorem 1 with § = 1 is obviously satisfied
for the first series, since

> P(lanV PN > 1) =0.
k=1

For the second series we have by Lemma 3 that

X0 o0
S P(lankV 2l > 1) = Y P(llankVakl| > 1)

< CE|X|7T°1(|X| > n") = o(1).

Hence, condition (4) is satisfied for both series.
Finally, we check condition (2) from Theorem 1 for both series. To
do this, we introduce the following notations. For ¢ > 0 such that



824 Soo Hak Sung and Andrei I. Volodin

0<tf < pandanyn>1,let

1 1 1
A, =1k K————¢, Bp=1kl —F— <lan| < = ¢.
o= oo < b o= {4 gy <o < 55

Next, for any n > 1 let

JW ) ak ke An . [ ank  ifk € By
nk — 0  otherwise , nk — 0  otherwise.

Let r = % + 6 < 2. First we mention that

o
1 T
;g?;;;Euai,BVéi)u < kZA Bt Voi|I”

1 o/ /v+0 - 6
<C| ———— E| X |7
- (n’r logt(n)) X1 kgl @]

< Clog™/(n)E|X|*/+.

Hence we have that

(5) > ElaVI? < 3 ElaQvRIm < Clog™/1(n) E|X|*/ 7+
k=1 k=1

and

xR
(6) ZEHGSIC)VTS:)W < Clog™t/7(n)E| X |2/,
k=1
In order to verify condition (2) for other cases, put

1 1
B =<kl ————— < < — 7.
" { g+ <l S mlogf(j)}

Then {B,;,1 < j < n — 1} are disjoint, U?;lanj = By, and by Lemma
1 with ¢(4) = log'(j), #B,, < n®t"?log®(n). We can estimate

oo
2 2 r T 1
S BNV = 3 lansl BVl (el > - )
k=1 kEBn nk

<C Y lank"EIX[TI(|X] > n")
kEBn
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< CEIXI"I(|X|>n")(n77) §Bn
(7) < CEIX["I(|X| > n")log"(n)
< CE|X["log’(IX)I(|X| > n")1og"~*(n)
< CE|X|"log?(|X]) log"*(n).

Next, we estimate the remaining part in the following way
1)p2
ZMI Vel

= Z > Bllank Vol I(llank Vol < 1)

j=1 k€By;

ZE:

EBM

I/\

EIIVnkIIZI(IankII < nYlog'(j +1))
(nY log

)—-\

n—

<C

INgR

- 0

#Brjn " log™* () EX?I(|X] < n”log'(j +1))
J
1

+C ) 4B P(IX| > n"log!(j +1))
1
= I} + Iy, say.

<.
1l

Here we used the fact that if a random variable Y is stochastically dom-
inated by a random variable X, then for all s > 0 and b > 0

ElYPI(|Y| <b) < CE|X|*I{|X| < b) + Cb°P(|X| > b).
Letp=2—%—0>0. Since%Tasxﬁoo,
P (log'G 1) _ n*log™(y)
log?(z) ~ log?(n7logt(j + 1)) ~ log”(n) ’
if z < nYlog'(j +1). Then

hsc nfﬂB 7= log™2 () BIX " log?(1X ) 2" 1)
=t log?(n)
nYH—27 n—1
- Clog P(n )EIXITIOg .9 Zlogt# 2t( )ﬁan

j=1
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TH—2y nt
L B|X["10g?(|X]) Y §Bn; (since tu — 2t < 0)
SClogp(n)E,X' og 2 nj [

< CE|X]|" log?(|X|) log"~*(n).

Clearly, I3 is dominated by

n-1
CP(|X|>n") Z #Bnj < CP(IX| > n")n*t 10" (n)
j=1
< CE|X| logP(|X|) log?*(n).
Hence
[o o]
(8) ST E[a@VRI? < CEIX|*/7+0 10g?(1X]) 1og?* (n).
k=1

Take J such that J(p — t8) > 2 and Jta/y > 2. We have by (5) and
(8) that

n=1" “k=1
1

= 5 2 BRI+ S BV R

n=1"" k=1 k=1

00 1 J

< Z - (C’EIX[“/V“’ log ™t/ (n) + CE|X|*/7*° log? (| X]) logw"”(n))

n=1
o
et nlog*(n)’

since E|X|*/791og?(|X]) < co. Hence for the first series condition (2)
from Theorem 1 is satisfied with ¢ = 2.

Next, by (6) and (7) we have that
00 J
2)yr
(X By )
k=1

o0 [e’e} J
(Z ElaQvO | + ZEHa&?Vé?nT)
k=1 k=1

SR

2

n

i

o0
n
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o0 J
<3, (0E|X|a/"+" log™**/"(n) + CE|X|*/"*"log? (X ) logw-%n))

— 1
<C —.
- Z nlog?(n)

n=1

Hence for the second series condition (2) from Theorem 1 is satisfied

with ¢ =r.
Therefore all conditions from Theorem 1 are satisfied for both series,
and so the proof is complete. O
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